1,084 research outputs found
After the Loyalists: The Archaeology of 19th Century Kingston
No abstract available at this time
Forty years studying British politics : the decline of Anglo-America
The still present belief some 40 years ago that British politics was both exceptional and superior has been replaced by more theoretically sophisticated analyses based on a wider and more rigorously deployed range of research techniques, although historical analysis appropriately remains important. The American influence on the study of British politics has declined, but the European Union dimension has not been fully integrated. The study of interest groups has been in some respects a fading paradigm, but important questions related to democratic health have still to be addressed. Public administration has been supplanted by public policy, but economic policy remains under-studied. A key challenge for the future is the study of the management of expectations
Resolution of Distance Ambiguities of Inner Galaxy Massive Star Formation Regions II
We report simultaneous H110alpha and H2CO line observations with the NRAO
Green Bank Telescope toward 72 H II regions in the SPITZER/GLIMPSE survey area
(|l| = 10 deg - 65 deg and |b| </= 1 deg). We used the H110alpha line to
establish the velocity of the H II regions and H2CO absorption lines to
distinguish between near and far distances. We examined the projected location
of H II regions whose distance ambiguities have been resolved (in this work and
other similar studies) in the Galactic plane and in a longitude-velocity
diagram for a recognizable spiral arm pattern. Although the highest density of
points in the position-position plot approximately follows the spiral arms
proposed by Taylor and Cordes (1993), the dispersion is still about as large as
the separation between their proposed arms. The longitude-velocity plot shows
an increase in the density of sources at the points where the spiral arm loci
proposed by Taylor and Cordes (1993) are approaching the locus of tangent point
velocities and a lower density between the arm loci. However, it is not
possible to trace spiral arms over significant segments of Galactic longitude
in the longitude-velocity plot. We conclude that a very large number of H II
regions in combination with more sophisticated Galactic rotation models will be
required to obtain a more continuous spiral pattern from kinematic studies of H
II regions than from fully sampled surveys of H I or CO.Comment: Accepted for publication in ApJS (October 2004, v.154 issue); 50
pages, 3 figures, 7 table
A Multi-Frequency Radio Study of Supernova Remnant G292.0+1.8 and its Pulsar Wind Nebula
(Abridged) We present a detailed radio study of the young supernova remnant
(SNR) G292.0+1.8 and its associated pulsar PSR J1124-5916, using the Australia
Telescope Compact Array at observing wavelengths of 20, 13 and 6 cm. We find
that the radio morphology of the source consists of three main components: a
polarized flat-spectrum central core coincident with the pulsar J1124-5916, a
surrounding circular steep-spectrum plateau with sharp outer edges and,
superimposed on the plateau, a series of radial filaments with spectra
significantly flatter than their surroundings. HI absorption argues for a lower
limit on the distance to the system of 6 kpc.
The core clearly corresponds to radio emission from a pulsar wind nebula
powered by PSR J1124-5916, while the plateau represents the surrounding SNR
shell. The plateau's sharp outer rim delineates the SNR's forward shock, while
the thickness of the plateau region demonstrates that the forward and reverse
shocks are well-separated. Assuming a distance of 6 kpc and an age for the
source of 2500 yr, we infer an expansion velocity for the SNR of ~1200 km/s and
an ambient density ~0.9 cm^-3. We interpret the flat-spectrum radial filaments
superimposed on the steeper-spectrum plateau as Rayleigh-Taylor unstable
regions between the forward and reverse shocks of the SNR. The flat radio
spectrum seen for these features results from efficient second-order Fermi
acceleration in strongly amplified magnetic fields.Comment: 11 pages of text, plus 7 embedded EPS figures. Accepted to ApJ. Added
missing units on x-axis of Fig
The genetics of cardiovascular disease
Recent advances in genotyping technology and insights into disease mechanisms have increased interest in the genetics of cardiovascular disease. Several candidate genes involved in cardiovascular diseases were identified from studies using animal models, and the translation of these findings to human disease is an exciting challenge. There is a trend towards large-scale genome-wide association studies that are subject to strict quality criteria with regard to both genotyping and phenotyping. Here, we review some of the strategies that have been developed to translate findings from experimental models to human disease and outline the need for optimizing global approaches to analyze such results. Findings from ongoing studies are interpreted in the context of disease pathways instead of the more traditional focus on single genetic variants
The Milky Way's circular velocity curve between 4 and 14 kpc from APOGEE data
We measure the Milky Way's rotation curve over the Galactocentric range 4 kpc
<~ R <~ 14 kpc from the first year of data from the Apache Point Observatory
Galactic Evolution Experiment (APOGEE). We model the line-of-sight velocities
of 3,365 stars in fourteen fields with b = 0 deg between 30 deg < l < 210 deg
out to distances of 10 kpc using an axisymmetric kinematical model that
includes a correction for the asymmetric drift of the warm tracer population
(\sigma_R ~ 35 km/s). We determine the local value of the circular velocity to
be V_c(R_0) = 218 +/- 6 km/s and find that the rotation curve is approximately
flat with a local derivative between -3.0 km/s/kpc and 0.4 km/s/kpc. We also
measure the Sun's position and velocity in the Galactocentric rest frame,
finding the distance to the Galactic center to be 8 kpc < R_0 < 9 kpc, radial
velocity V_{R,sun} = -10 +/- 1 km/s, and rotational velocity V_{\phi,sun} =
242^{+10}_{-3} km/s, in good agreement with local measurements of the Sun's
radial velocity and with the observed proper motion of Sgr A*. We investigate
various systematic uncertainties and find that these are limited to offsets at
the percent level, ~2 km/s in V_c. Marginalizing over all the systematics that
we consider, we find that V_c(R_0) 99% confidence. We find an
offset between the Sun's rotational velocity and the local circular velocity of
26 +/- 3 km/s, which is larger than the locally-measured solar motion of 12
km/s. This larger offset reconciles our value for V_c with recent claims that
V_c >~ 240 km/s. Combining our results with other data, we find that the Milky
Way's dark-halo mass within the virial radius is ~8x10^{11} M_sun.Comment: submitted to Ap
Diabetes Care in Black and White Veterans in the Southeastern U.S.
Abstract available at publisher's web site
The Interstellar Environment of our Galaxy
We review the current knowledge and understanding of the interstellar medium
of our galaxy. We first present each of the three basic constituents - ordinary
matter, cosmic rays, and magnetic fields - of the interstellar medium, laying
emphasis on their physical and chemical properties inferred from a broad range
of observations. We then position the different interstellar constituents, both
with respect to each other and with respect to stars, within the general
galactic ecosystem.Comment: 39 pages, 12 figures (including 3 figures in 2 parts
The genetic landscape of Scotland and the Isles
Britain and Ireland are known to show population genetic structure; however, large swathes of Scotland, in particular, have yet to be described. Delineating the structure and ancestry of these populations will allow variant discovery efforts to focus efficiently on areas not represented in existing cohorts. Thus, we assembled genotype data for 2,554 individuals from across the entire archipelago with geographically restricted ancestry, and performed population structure analyses and comparisons to ancient DNA. Extensive geographic structuring is revealed, from broad scales such as a NE to SW divide in mainland Scotland, through to the finest scale observed to date: across 3 km in the Northern Isles. Many genetic boundaries are consistent with Dark Age kingdoms of Gaels, Picts, Britons, and Norse. Populations in the Hebrides, the Highlands, Argyll, Donegal, and the Isle of Man show characteristics of isolation. We document a pole of Norwegian ancestry in the north of the archipelago (reaching 23 to 28% in Shetland) which complements previously described poles of Germanic ancestry in the east, and "Celtic" to the west. This modern genetic structure suggests a northwestern British or Irish source population for the ancient Gaels that contributed to the founding of Iceland. As rarer variants, often with larger effect sizes, become the focus of complex trait genetics, more diverse rural cohorts may be required to optimize discoveries in British and Irish populations and their considerable global diaspora.</p
- …