284 research outputs found

    Laser spectroscopy and cooling of Yb+ ions on a deep-UV transition

    Full text link
    We perform laser spectroscopy of Yb+ ions on the 4f14 6s 2S_{1/2} - 4f13 5d 6s 3D[3/2]_{1/2} transition at 297 nm. The frequency measurements for 170Yb+, 172Yb+, 174Yb+, and 176Yb+ reveal the specific mass shift as well as the field shifts. In addition, we demonstrate laser cooling of Yb+ ions using this transition and show that light at 297 nm can be used as the second step in the photoionization of neutral Yb atoms

    Observing the Profile of an Atom Laser Beam

    Get PDF
    We report on an investigation of the beam profile of an atom laser extracted from a magnetically trapped 87^{87}Rb Bose-Einstein condensate. The transverse momentum distribution is magnified by a curved mirror for matter waves and a momentum resolution of 1/60 of a photon recoil is obtained. We find the transverse momentum distribution to be determined by the mean-field potential of the residing condensate, which leads to a non-smooth transverse density distribution. Our experimental data are compared with a full 3D simulation of the output coupling process and we find good agreement.Comment: 4 pages, 4 figure

    Time interval distributions of atoms in atomic beams

    Full text link
    We report on the experimental investigation of two-particle correlations between neutral atoms in a Hanbury Brown and Twiss experiment. Both an atom laser beam and a pseudo-thermal atomic beam are extracted from a Bose-Einstein condensate and the atom flux is measured with a single atom counter. We determine the conditional and the unconditional detection probabilities for the atoms in the beam and find good agreement with the theoretical predictions.Comment: 4 pages, 3 figure

    Magnetic phases of one-dimensional lattices with 2 to 4 fermions per site

    Full text link
    We study the spectral and magnetic properties of one-dimensional lattices filled with 2 to 4 fermions (with spin 1/2) per lattice site. We use a generalized Hubbard model that takes account all interactions on a lattice site, and solve the many-particle problem by exact diagonalization. We find an intriguing magnetic phase diagram which includes ferromagnetism, spin-one Heisenberg antiferromagnetism, and orbital antiferromagnetism.Comment: 8 pages, 6 figure

    A slow gravity compensated Atom Laser

    Full text link
    We report on a slow guided atom laser beam outcoupled from a Bose-Einstein condensate of 87Rb atoms in a hybrid trap. The acceleration of the atom laser beam can be controlled by compensating the gravitational acceleration and we reach residual accelerations as low as 0.0027 g. The outcoupling mechanism allows for the production of a constant flux of 4.5x10^6 atoms per second and due to transverse guiding we obtain an upper limit for the mean beam width of 4.6 \mu\m. The transverse velocity spread is only 0.2 mm/s and thus an upper limit for the beam quality parameter is M^2=2.5. We demonstrate the potential of the long interrogation times available with this atom laser beam by measuring the trap frequency in a single measurement. The small beam width together with the long evolution and interrogation time makes this atom laser beam a promising tool for continuous interferometric measurements.Comment: 7 pages, 8 figures, to be published in Applied Physics

    Insulating charge density wave for a half-filled SU(N) Hubbard model with an attractive on-site interaction in one dimension

    Full text link
    We study a one-dimensional SU(N) Hubbard model with an attractive on-site interaction and N>2N>2 at half-filling on the bipartite lattice using density-matrix renormalization-group method and a perturbation theory. We find that the ground state of the SU(N) Hubbard model is a charge density wave state with two-fold degeneracy. All the excitations are found to be gapful, resulting in an insulating ground state, on contrary to that in the SU(2) case. Moreover, the charge gap is equal to the Cooperon gap, which behaves as 2Nt2/(N1)U-2Nt^2/(N-1)U in the strong coupling regime. However, the spin gap Δs\Delta_{s} and the quasiparticle gap Δ1\Delta_{1} as well open exponentially in the weak coupling region, while in the strong coupling region, they linearly depend on UU such that ΔsU(N1)\Delta_{s}\sim -U(N-1) and Δ1U(N1)/2\Delta_{1}\sim -U(N-1)/2.Comment: 7 pages, 7 figure

    Античные и средневековые городища на дне Иссык-Куля

    Get PDF
    В статье дается обзор результатов многолетних подводных археологических разведок на озере Иссык-Куль. Приводятся данные по местоположению некоторых затопленных городищ античности и средних веков (Тору-Айгыр, Кара-ой, Чигу). Описываются наиболее интересные артефакты, найденные на дне озера.В статті дається огляд результатів багаторічних підводних археологічних розвідок на озері Іссик-Куль. Наводяться дані про місцезнаходження деяких затоплених городищ античності і середньовіччя (Тору-Айгир, Кара-ой, Чігу). Описуються найцікавіші артефакти, знайдені на дні озера.The article is a review of the results of many years’ underwater archaeological researches at lake Issik Kul. Data about the place of location of some Ancient and Medieval towns (Toru-Aygir, Kara-oy, Chigu) are given. Most interesting artefacts found at the bottom of the lake are described

    Evidence for Superfluidity of Ultracold Fermions in an Optical Lattice

    Full text link
    The study of superfluid fermion pairs in a periodic potential has important ramifications for understanding superconductivity in crystalline materials. Using cold atomic gases, various condensed matter models can be studied in a highly controllable environment. Weakly repulsive fermions in an optical lattice could undergo d-wave pairing at low temperatures, a possible mechanism for high temperature superconductivity in the cuprates. The lattice potential could also strongly increase the critical temperature for s-wave superfluidity. Recent experimental advances in the bulk include the observation of fermion pair condensates and high-temperature superfluidity. Experiments with fermions and bosonic bound pairs in optical lattices have been reported, but have not yet addressed superfluid behavior. Here we show that when a condensate of fermionic atom pairs was released from an optical lattice, distinct interference peaks appear, implying long range order, a property of a superfluid. Conceptually, this implies that strong s-wave pairing and superfluidity have now been established in a lattice potential, where the transport of atoms occurs by quantum mechanical tunneling and not by simple propagation. These observations were made for unitarity limited interactions on both sides of a Feshbach resonance. For larger lattice depths, the coherence was lost in a reversible manner, possibly due to a superfluid to insulator transition. Such strongly interacting fermions in an optical lattice can be used to study a new class of Hamiltonians with interband and atom-molecule couplings.Comment: accepted for publication in Natur

    Collapse and revival of oscillations in a parametrically excited Bose-Einstein condensate in combined harmonic and optical lattice trap

    Full text link
    In this work, we study parametric resonances in an elongated cigar-shaped BEC in a combined harmonic trap and a time dependent optical lattice by using numerical and analytical techniques. We show that there exists a relative competition between the harmonic trap which tries to spatially localize the BEC and the time varying optical lattice which tries to delocalize the BEC. This competition gives rise to parametric resonances (collapse and revival of the oscillations of the BEC width). Parametric resonances disappear when one of the competing factors i.e strength of harmonic trap or the strength of optical lattice dominates. Parametric instabilities (exponential growth of Bogoliubov modes) arise for large variations in the strength of the optical lattice.Comment: 9 pages, 20 figure

    Measuring the temporal coherence of an atom laser beam

    Full text link
    We report on the measurement of the temporal coherence of an atom laser beam extracted from a 87^{87}Rb Bose-Einstein condensate. Reflecting the beam from a potential barrier creates a standing matter wave structure. From the contrast of this interference pattern, observed by magnetic resonance imaging, we have deduced an energy width of the atom laser beam which is Fourier limited by the duration of output coupling. This gives an upper limit for temporal phase fluctuations in the Bose-Einstein condensate.Comment: 4 pages, 3 figure
    corecore