55 research outputs found

    Nerve excitability changes in critical illness polyneuropathy

    Get PDF
    Patients in intensive care units frequently suffer muscle weakness and atrophy due to critical illness polyneuropathy (CIP), an axonal neuropathy associated with systemic inflammatory response syndrome and multiple organ failure. CIP is a frequent and serious complication of intensive care that delays weaning from mechanical ventilation and increases mortality. The pathogenesis of CIP is not well understood and no specific therapy is available. The aim of this project was to use nerve excitability testing to investigate the changes in axonal membrane properties occurring in CIP. Ten patients (aged 37-76 years; 7 males, 3 females) were studied with electrophysiologically proven CIP. The median nerve was stimulated at the wrist and compound action potentials were recorded from abductor pollicis brevis muscle. Strength-duration time constant, threshold electrotonus, current-threshold relationship and recovery cycle (refractoriness, superexcitability and late subexcitability) were recorded using a recently described protocol. In eight patients a follow-up investigation was performed. All patients underwent clinical examination and laboratory investigations. Compared with age-matched normal controls (20 subjects; aged 38-79 years; 7 males, 13 females), CIP patients exhibited reduced superexcitability at 7 ms, from −22.3 ± 1.6% to −7.6 ± 3.1% (mean ± SE, P ≈ 0.0001) and increased accommodation to depolarizing (P < 0.01) and hyperpolarizing currents (P < 0.01), indicating membrane depolarization. Superexcitability was reduced both in patients with renal failure and without renal failure. In the former, superexcitability correlated with serum potassium (R = 0.88), and late subexcitability was also reduced (as also occurs owing to hyperkalaemia in patients with chronic renal failure). In patients without renal failure, late subexcitability was normal, and the signs of membrane depolarization correlated with raised serum bicarbonate and base excess, indicating compensated respiratory acidosis. It is inferred that motor axons in these CIP patients are depolarized, in part because of raised extracellular potassium, and in part because of hypoperfusion. The chronic membrane depolarization may contribute to the development of neuropath

    Muscle velocity recovery cycles in myopathy.

    Get PDF
    OBJECTIVE To understand the pathophysiology of myopathies by using muscle velocity recovery cycles (MVRC) and frequency ramp (RAMP) methodologies. METHODS 42 patients with quantitative electromyography (qEMG) and biopsy or genetic verified myopathy and 42 healthy controls were examined with qEMG, MVRC and RAMP, all recorded from the anterior tibial muscle. RESULTS There were significant differences in the motor unit potential (MUP) duration, the early and late supernormalities of the MVRC and the RAMP latencies in myopathy patients compared to controls (p < 0.05 apart from muscle relatively refractory period (MRRP)). When dividing into subgroups, the above-mentioned changes in MVRC and RAMP parameters were increased for the patients with non-inflammatory myopathy, while there were no significant changes in the group of patients with inflammatory myopathy. CONCLUSIONS The MVRC and RAMP parameters can discriminate between healthy controls and myopathy patients, more significantly for non-inflammatory myopathy. MVRC differences with normal MRRP in myopathy differs from other conditions with membrane depolarisation. SIGNIFICANCE MVCR and RAMP may have a potential in understanding disease pathophysiology in myopathies. The pathogenesis in non-inflammatory myopathy does not seem to be caused by a depolarisation of the resting membrane potential but rather by the change in sodium channels of the muscle membrane

    Nerve excitability changes in critical illness polyneuropathy

    Get PDF
    Patients in intensive care units frequently suffer muscle weakness and atrophy due to critical illness polyneuropathy (CIP), an axonal neuropathy associated with systemic inflammatory response syndrome and multiple organ failure. CIP is a frequent and serious complication of intensive care that delays weaning from mechanical ventilation and increases mortality. The pathogenesis of CIP is not well understood and no specific therapy is available. The aim of this project was to use nerve excitability testing to investigate the changes in axonal membrane properties occurring in CIP. Ten patients (aged 37-76 years; 7 males, 3 females) were studied with electrophysiologically proven CIP. The median nerve was stimulated at the wrist and compound action potentials were recorded from abductor pollicis brevis muscle. Strength-duration time constant, threshold electrotonus, current-threshold relationship and recovery cycle (refractoriness, superexcitability and late subexcitability) were recorded using a recently described protocol. In eight patients a follow-up investigation was performed. All patients underwent clinical examination and laboratory investigations. Compared with age-matched normal controls (20 subjects; aged 38-79 years; 7 males, 13 females), CIP patients exhibited reduced superexcitability at 7 ms, from -22.3 +/- 1.6% to -7.6 +/- 3.1% (mean +/- SE, P approximately 0.0001) and increased accommodation to depolarizing (P < 0.01) and hyperpolarizing currents (P < 0.01), indicating membrane depolarization. Superexcitability was reduced both in patients with renal failure and without renal failure. In the former, superexcitability correlated with serum potassium (R = 0.88), and late subexcitability was also reduced (as also occurs owing to hyperkalaemia in patients with chronic renal failure). In patients without renal failure, late subexcitability was normal, and the signs of membrane depolarization correlated with raised serum bicarbonate and base excess, indicating compensated respiratory acidosis. It is inferred that motor axons in these CIP patients are depolarized, in part because of raised extracellular potassium, and in part because of hypoperfusion. The chronic membrane depolarization may contribute to the development of neuropathy

    A new approach for modeling delayed fire‐induced tree mortality

    Get PDF
    Abstract Global change is expanding the ecological niche of mixed‐severity fire regimes into ecosystems that have not usually been associated with wildfires, such as temperate forests and rainforests. In contrast to stand‐replacing fires, mixed‐severity fires may result in delayed tree mortality driven by secondary factors such as post‐fire environmental conditions. Because these effects vary as a function of time post‐fire, their study using commonly applied logistic regression models is challenging. Here, we propose overcoming this challenge through the application of time‐explicit survival models such as the Kaplan‐Meier (KM‐) estimator and the Cox proportional‐hazards (PH‐) model. We use data on tree mortality after mixed‐severity fires in beech forests to (1) illustrate temporal trends in the survival probabilities and the mortality hazard of beech, (2) estimate annual survival probabilities for different burn severities, and (3) consider driving factors with possible time‐dependent effects. Based on our results, we argue that the combination of KM‐estimator and Cox‐PH models have the potential of substantially improve the analysis of delayed post‐disturbance tree mortality by answering when and why tree mortality occurs. The results provide more specific information for implementing post‐fire management measures

    Clinical autonomic nervous system laboratories in Europe. A joint survey of the European Academy of Neurology and the European Federation of Autonomic Societies

    Get PDF
    Background and purpose: Disorders of the autonomic nervous system (ANS) are common conditions, but it is unclear whether access to ANS healthcare provision is homogeneous across European countries. The aim of this study was to identify neurology-driven or interdisciplinary clinical ANS laboratories in Europe, describe their characteristics and explore regional differences. Methods: We contacted the European national ANS and neurological societies, as well as members of our professional network, to identify clinical ANS laboratories in each country and invite them to answer a web-based survey. Results: We identified 84 laboratories in 22 countries and 46 (55%) answered the survey. All laboratories perform cardiovascular autonomic function tests, and 83% also perform sweat tests. Testing for catecholamines and autoantibodies are performed in 63% and 56% of laboratories, and epidermal nerve fiber density analysis in 63%. Each laboratory is staffed by a median of two consultants, one resident, one technician and one nurse. The median (interquartile range [IQR]) number of head-up tilt tests/laboratory/year is 105 (49–251). Reflex syncope and neurogenic orthostatic hypotension are the most frequently diagnosed cardiovascular ANS disorders. Thirty-five centers (76%) have an ANS outpatient clinic, with a median (IQR) of 200 (100–360) outpatient visits/year; 42 centers (91%) also offer inpatient care (median 20 [IQR 4–110] inpatient stays/year). Forty-one laboratories (89%) are involved in research activities. We observed a significant difference in the geographical distribution of ANS services among European regions: 11 out of 12 countries from North/West Europe have at least one ANS laboratory versus 11 out of 21 from South/East/Greater Europe (p&nbsp;= 0.021). Conclusions: This survey highlights disparities in the availability of healthcare services for people with ANS disorders across European countries, stressing the need for improved access to specialized care in South, East and Greater Europe

    Etiology, 3-Month Functional Outcome and Recurrent Events in Non-Traumatic Intracerebral Hemorrhage.

    Get PDF
    BACKGROUND AND PURPOSE Knowledge about different etiologies of non-traumatic intracerebral hemorrhage (ICH) and their outcomes is scarce. METHODS We assessed prevalence of pre-specified ICH etiologies and their association with outcomes in consecutive ICH patients enrolled in the prospective Swiss Stroke Registry (2014 to 2019). RESULTS We included 2,650 patients (mean±standard deviation age 72±14 years, 46.5% female, median National Institutes of Health Stroke Scale 8 [interquartile range, 3 to 15]). Etiology was as follows: hypertension, 1,238 (46.7%); unknown, 566 (21.4%); antithrombotic therapy, 227 (8.6%); cerebral amyloid angiopathy (CAA), 217 (8.2%); macrovascular cause, 128 (4.8%); other determined etiology, 274 patients (10.3%). At 3 months, 880 patients (33.2%) were functionally independent and 664 had died (25.1%). ICH due to hypertension had a higher odds of functional independence (adjusted odds ratio [aOR], 1.33; 95% confidence interval [CI], 1.00 to 1.77; P=0.05) and lower mortality (aOR, 0.64; 95% CI, 0.47 to 0.86; P=0.003). ICH due to antithrombotic therapy had higher mortality (aOR, 1.62; 95% CI, 1.01 to 2.61; P=0.045). Within 3 months, 4.2% of patients had cerebrovascular events. The rate of ischemic stroke was higher than that of recurrent ICH in all etiologies but CAA and unknown etiology. CAA had high odds of recurrent ICH (aOR, 3.38; 95% CI, 1.48 to 7.69; P=0.004) while the odds was lower in ICH due to hypertension (aOR, 0.42; 95% CI, 0.19 to 0.93; P=0.031). CONCLUSIONS Although hypertension is the leading etiology of ICH, other etiologies are frequent. One-third of ICH patients are functionally independent at 3 months. Except for patients with presumed CAA, the risk of ischemic stroke within 3 months of ICH was higher than the risk of recurrent hemorrhage

    Direction of Movement Is Encoded in the Human Primary Motor Cortex

    Get PDF
    The present study investigated how direction of hand movement, which is a well-described parameter in cerebral organization of motor control, is incorporated in the somatotopic representation of the manual effector system in the human primary motor cortex (M1). Using functional magnetic resonance imaging (fMRI) and a manual step-tracking task we found that activation patterns related to movement in different directions were spatially disjoint within the representation area of the hand on M1. Foci of activation related to specific movement directions were segregated within the M1 hand area; activation related to direction 0° (right) was located most laterally/superficially, whereas directions 180° (left) and 270° (down) elicited activation more medially within the hand area. Activation related to direction 90° was located between the other directions. Moreover, by investigating differences between activations related to movement along the horizontal (0°+180°) and vertical (90°+270°) axis, we found that activation related to the horizontal axis was located more anterolaterally/dorsally in M1 than for the vertical axis, supporting that activations related to individual movement directions are direction- and not muscle related. Our results of spatially segregated direction-related activations in M1 are in accordance with findings of recent fMRI studies on neural encoding of direction in human M1. Our results thus provide further evidence for a direct link between direction as an organizational principle in sensorimotor transformation and movement execution coded by effector representations in M1

    Decompressive craniectomy plus best medical treatment versus best medical treatment alone for spontaneous severe deep supratentorial intracerebral haemorrhage: a randomised controlled clinical trial

    Get PDF
    Background It is unknown whether decompressive craniectomy improves clinical outcome for people with spontaneous severe deep intracerebral haemorrhage. The SWITCH trial aimed to assess whether decompressive craniectomy plus best medical treatment in these patients improves outcome at 6 months compared to best medical treatment alone. Methods In this multicentre, randomised, open-label, assessor-blinded trial conducted in 42 stroke centres in Austria, Belgium, Finland, France, Germany, the Netherlands, Spain, Sweden, and Switzerland, adults (18–75 years) with a severe intracerebral haemorrhage involving the basal ganglia or thalamus were randomly assigned to receive either decompressive craniectomy plus best medical treatment or best medical treatment alone. The primary outcome was a score of 5–6 on the modified Rankin Scale (mRS) at 180 days, analysed in the intention-to-treat population. This trial is registered with ClincalTrials.gov , NCT02258919 , and is completed. Findings SWITCH had to be stopped early due to lack of funding. Between Oct 6, 2014, and April 4, 2023, 201 individuals were randomly assigned and 197 gave delayed informed consent (96 decompressive craniectomy plus best medical treatment, 101 best medical treatment). 63 (32%) were women and 134 (68%) men, the median age was 61 years (IQR 51–68), and the median haematoma volume 57 mL (IQR 44–74). 42 (44%) of 95 participants assigned to decompressive craniectomy plus best medical treatment and 55 (58%) assigned to best medical treatment alone had an mRS of 5–6 at 180 days (adjusted risk ratio [aRR] 0·77, 95% CI 0·59 to 1·01, adjusted risk difference [aRD] −13%, 95% CI −26 to 0, p=0·057). In the per-protocol analysis, 36 (47%) of 77 participants in the decompressive craniectomy plus best medical treatment group and 44 (60%) of 73 in the best medical treatment alone group had an mRS of 5–6 (aRR 0·76, 95% CI 0·58 to 1·00, aRD −15%, 95% CI −28 to 0). Severe adverse events occurred in 42 (41%) of 103 participants receiving decompressive craniectomy plus best medical treatment and 41 (44%) of 94 receiving best medical treatment. Interpretation SWITCH provides weak evidence that decompressive craniectomy plus best medical treatment might be superior to best medical treatment alone in people with severe deep intracerebral haemorrhage. The results do not apply to intracerebral haemorrhage in other locations, and survival is associated with severe disability in both groups. Funding Swiss National Science Foundation, Swiss Heart Foundation, Inselspital Stiftung, and Boehringer Ingelheim

    Nerve excitability changes in critical illness polyneuropathy

    No full text

    Acute fluid ingestion in the treatment of orthostatic intolerance - important implications for daily practice

    No full text
    Rapid water ingestion improves orthostatic intolerance (OI) in multiple system atrophy (MSA) and postural tachycardia syndrome (PoTS). We compared haemodynamic changes after water and clear soup intake, the latter being a common treatment strategy for OI in daily practice
    • 

    corecore