1,167 research outputs found
Equilibration of the terrestrial water, nitrogen, and carbon cycles
Recent advances in biologically based ecosystem models of the coupled terrestrial, hydrological, carbon, and nutrient cycles have provided new perspectives on the terrestrial biosphere’s behavior globally, over a range of time scales. We used the terrestrial ecosystem model Century to examine relationships between carbon, nitrogen, and water dynamics. The model, run to a quasi-steady-state, shows strong correlations between carbon, water, and nitrogen fluxes that lead to equilibration of wateryenergy and nitrogen limitation of net primary productivity. This occurs because as the water flux increases, the potentials for carbon uptake (photosynthesis), and inputs and losses of nitrogen, all increase. As the flux of carbon increases, the amount of nitrogen that can be captured into organic matter and then recycled also increases. Because most plant-available nitrogen is derived from internal recycling, this latter process is critical to sustaining high productivity in environments where water and energy are plentiful. At steady-state, wateryenergy and nitrogen limitation ‘‘equilibrate,’’ but because the water, carbon, and nitrogen cycles have different response times, inclusion of nitrogen cycling into ecosystem models adds behavior at longer time scales than in purely biophysical models. The tight correlations among nitrogen fluxes with evapotranspiration implies that either climate change or changes to nitrogen inputs (from fertilization or air pollution) will have large and long-lived effects on both productivity and nitrogen losses through hydrological and trace gas pathways. Comprehensive analyses of the role of ecosystems in the carbon cycle must consider mechanisms that arise from the interaction of the hydrological, carbon, and nutrient cycles in ecosystems
Primary production of the central grassland region of the United States
Includes bibliographical references (pages 44-45).Aboveground net primary production of grasslands is strongly influenced by the amount and distribution of annual precipitation. Analysis of data collected at 9500 sites throughout the central United States confirmed the overwhelming importance of water availability as a control of production. The regional spatial pattern of production reflected the east-west gradient in annual precipitation. Lowest values of aboveground net primary production were observed in the west and highest values in the east. This spatial pattern was shifted eastward during unfavorable years and westward during favorable years. Variability in production among years was maximum in northern New Mexico and southwestern Kansas and decreased towards the north and south. The regional pattern of production was largely accounted for by annual precipitation. Production at the site level was explained by annual precipitation, soil water-holding capacity, and an interaction term. Our results support the inverse texture hypothesis. When precipitation is 370 mm/yr
A toy terrestrial carbon flow model
A generalized carbon flow model for the major terrestrial ecosystems of the world is reported. The model is a simplification of the Century model and the Forest-Biogeochemical model. Topics covered include plant production, decomposition and nutrient cycling, biomes, the utility of the carbon flow model for predicting carbon dynamics under global change, and possible applications to state-and-transition models and environmentally driven global vegetation models
Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils
Soil carbon, a major component of the global carbon inventory, has significant potential for change with changing climate and human land use. We applied the Century ecosystem model to a series of forest and grassland sites distributed globally to examine large-scale controls over soil carbon. Key site-specific parameters influencing soil carbon dynamics are soil texture and foliar lignin content; accordingly, we perturbed these variables at each site to establish a range of carbon concentrations and turnover times. We examined the simulated soil carbon stores, turnover times, and C:N ratios for correlations with patterns of independent variables. Results showed that soil carbon is related linearly to soil texture, increasing as clay content increases, that soil carbon stores and turnover time are related to mean annual temperature by negative exponential functions, and that heterotrophic respiration originates from recent detritus (∼50%), microbial turnover (∼30%), and soil organic matter (∼20%) with modest variations between forest and grassland ecosystems. The effect of changing temperature on soil organic carbon (SOC) estimated by Century is dSOC/dT= 183e−0.034T. Global extrapolation of this relationship leads to an estimated sensitivity of soil C storage to a temperature of −11.1 Pg° C−1, excluding extreme arid and organic soils. In Century, net primary production (NPP) and soil carbon are closely coupled through the N cycle, so that as temperatures increase, accelerated N release first results in fertilization responses, increasing C inputs. The Century-predicted effect of temperature on carbon storage is modified by as much as 100% by the N cycle feedback. Century-estimated soil C sensitivity (−11.1 Pg° C−1) is similar to losses predicted with a simple data-based calculation (−14.1 Pg° C−1). Inclusion of the N cycle is important for even first-order predictions of terrestrial carbon balance. If the NPP-SOC feedback is disrupted by land use or other disturbances, then SOC sensitivity can greatly exceed that estimated in our simulations. Century results further suggest that if climate change results in drying of organic soils (peats), soil carbon loss rates can be high
Climate and nitrogen controls on the geography and timescales of terrestrial biogeochemical cycling
We used the terrestrial ecosystem model “Century” to evaluate the relative roles of water and nitrogen limitation of net primary productivity, spatially and in response to climate variability. Within ecology, there has been considerable confusion and controversy over the large-scale significance of limitation of net primary production (NPP) by nutrients versus biophysical quantities (e.g., heat, water, and sunlight) with considerable evidence supporting both views. The Century model, run to a quasi-steady state condition, predicts “equilibration” of water with nutrient limitation, because carbon fixation and nitrogen fluxes (inputs and losses) are controlled by water fluxes, and the capture of nitrogen into organic matter is governed by carbon fixation. Patterns in the coupled water, nitrogen, and carbon cycles are modified substantially by ecosystem type or species-specific controls over resource use efficiency (water and nitrogen used per unit NPP), detrital chemistry, and soil water holding capacity. We also examined the coupling between water and nutrients during several temperature perturbation experiments. Model experiments forced by satellite-observed temperatures suggest that climate anomalies can result in significant changes to terrestrial carbon dynamics. The cooling associated with the Mount Pinatubo eruption aerosol injection may have transiently increased terrestrial carbon storage. However, because processes in the water, carbon, and nitrogen cycles have different response times, model behavior during the return to steady state following perturbation was complex and extended for decades after 1- to 5-year perturbations. Thus consequences of climate anomalies are influenced by the climatic conditions of the preceding years, and climate-carbon correlations may not be simple to interpret
Elevated CO\u3csub\u3e2\u3c/sub\u3e Enhances Productivity and the C/N Ratio of Grasses in the Colorado Shortgrass Steppe
Atmospheric CO2 concentrations have been increasing since the industrial revolution, and are projected to double within this century over today\u27s concentration of 360 µmol mol-1 . This study used six open-top chambers in the Colorado, USA shortgrass steppe to investigate how increasing CO2 will affect productivity and C and N status of indigenous perennial grasses and forbs. From March until October, chambers were placed on two plots in each of the three blocks. In each block, one chamber was assigned an ambient CO2 treatment (~360 µmol mol-1), the other an elevated CO2 treatment (~720 µmol mol-1). Each block also had an unchambered control plot. Growth under elevated CO2 increased above-ground phytomass an average 31% in 1997 and 47% in 1998, with no differences in relative growth responses of C3 and C4 grasses and forbs. Growth in chambers was greater than non-chambered control plots, presumably due to warmer temperatures in chambers and a longer growing season. Shoot N concentrations were reduced 21% and C/N ratios increased 23% in elevated compared to ambient chambers. Variation in aboveground phytomass due to year, CO2 and chamber effects correlated well to % shoot N and C/N ratios, although for both traits different regression lines were required for green plant material (harvested in July) and senescent plant material (harvested in October). Results suggest increased growth and reduced N concentrations in this mixed C3/C4 grassland in an elevated CO2 environment
Field Micrometeorological Measurements, Process-Level Studies and Modeling of Methane and Carbon Dioxide Fluxes in a Boreal Wetland Ecosystem
The main instrumentation platform consisted of eddy correlation sensors mounted on a scaffold tower at a height of 4.2 m above the peat surface. The sensors were attached to a boom assembly which could be rotated into the prevailing winds. The boom assembly was mounted on a movable sled which, when extended, allowed sensors to be up to 2 m away from the scaffolding structure to minimize flow distortion. When retracted, the sensors could easily be installed, serviced or rotated. An electronic level with linear actuators allowed the sensors to be remotely levelled once the sled was extended. Two instrument arrays were installed. A primary (fast-response) array consisted of a three-dimensional sonic anemometer, a methane sensor (tunable diode laser spectrometer), a carbon dioxide/water vapor sensor, a fine wire thermocouple and a backup one-dimensional sonic anemometer. The secondary array consisted of a one-dimensional sonic anemometer, a fine wire thermocouple and a Krypton hygrometer. Descriptions of these sensors may be found in other reports (e.g., Verma; Suyker and Verma). Slow-response sensors provided supporting measurements including mean air temperature and humidity, mean horizontal windspeed and direction, incoming and reflected solar radiation, net radiation, incoming and reflected photosynthetically active radiation (PAR), soil heat flux, peat temperature, water-table elevation and precipitation. A data acquisition system (consisting of an IBM compatible microcomputer, amplifiers and a 16 bit analog-to-digital converter), housed in a small trailer, was used to record the fast response signals. These signals were low-pass filtered (using 8-pole Butterworth active filters with a 12.5 Hz cutoff frequency) and sampled at 25 Hz. Slow-response signals were sampled every 5 s using a network of CR21X (Campbell Scientific, Inc., Logan Utah) data loggers installed in the fen. All signals were averaged over 30-minute periods (runs)
Performance, Stability and Compatibility of Oxygen/RP-1 Multi-Element Oxidizer-Rich Staged-Combustion Injectors
In 2015 and 2016, the National Aeronautics and Space Administration Marshall Space Flight Center designed, fabricated, assembled and hot-fire tested an oxygen/RP-1 propellant multi-element oxidizer-rich staged-combustion test article. The main objective was to provide thrust chamber combustion stability data as part of the Combustion Stability Tool Development program, although demonstration of performance and compatibility of oxidizer-rich main injectors was also important. Funding was provided by the Air Force Space and Missile Systems Center. Five configurations of main injectors were designed and fabricated, using conventional gas-centered swirl coaxial injector element designs generally similar to those used in oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines. Variations of element features included element size, recess depth, fuel gap width, and the presence of the sleeve separating the swirling fuel flow from the axial oxidizer flow. Ablative combustion chambers were fabricated based on hardware previously used at the NASA MSFC for testing at similar size and pressure. Existing oxygen/RP-1 oxidizer-rich subscale preburner injectors and hot gas ducts from a previous NASA-funded program were modified for use to supply the oxidizer-rich combustion products to the oxidizer circuit of the main injector of the thrust chamber. Testing of the resulting integrated test article - which included the preburner, inter-connecting hot gas duct, main injector, and ablative combustion chamber - was conducted at Test Stand 116 at the East Test Area of the NASA MSFC. The test article was well instrumented with static and dynamic pressure, temperature, and vibration sensors. This paper presents and discusses all the hot-fire test results of the integrated test article thrust chamber. Eighteen successful hot-fire tests of the integrated rig were conducted. Testing was accomplished with all five of the injector element concepts. Main combustion chamber pressures ranged from 710 to 2350 psia, and main combustion chamber mixture ratios ranged from 2.47 to 2.87. A chamber barrier fuel film coolant of about 2% to 4% of the total fuel flow was used for most tests. Characteristic exhaust velocity efficiency excluding the influence of the fuel film cooling ranged from 91% to 98% of theoretical. All tests of the thrust chamber exhibited stable combustion, even down to 40% of nominal operating pressures. Compatibility of the injector face and combustion chamber walls was acceptable. This paper is a follow-on to publication of preliminary test data presented at the 2016 JANNAF Liquid Propulsion Subcommittee meeting
Chapter 18. DAYCENT Simulated Effects of Land Use and Climate on County Level N Loss Vectors in the USA
We describe the nitrogen (N) gas (NH3, NOx, N2O, N2) emission and NO3 leaching submodels used in the DAYCENT ecosystem model and demonstrate the ability of DAYCENT to simulate observed N2O emission and NO3 leaching rates for various sites representing different climate regimes, soil types, and land uses. DAYCENT simulated seven major crops, grazing lands, and potential native vegetation at the county level for the United States. At the national scale, NO3 leaching was the major loss vector, accounting for 86%, 66%, and 56% of total N losses for cropped soils, grazed lands, and native vegetation, respectively. NH3 volatilization + NOx emissions made up the majority of national N gas losses, accounting for 58%, 89%, and 86% of N gas losses from cropped soils, grazed lands, and native vegetation, respectively. However, there was considerable spatial variability in the N loss vectors, with leaching accounting for less than 20% of total N losses and NOx + NH3 emissions accounting for less than 50% of N gas losses in some counties. Land use area weighted mean annual N losses were 43.9 (SD = 26.8) and 12.3 (SD = 22.2)kg N/ha for cropped/grazed and native systems, respectively. Area weighted mean annual N gas losses were 11.8 (SD = 4.8) and 5.4 (SD = 2.1)kg N/ha for cropped/grazed and native systems, respectively. Total N losses and NO3 leaching tended to increase as N inputs and precipitation increased, and as soils became coarser textured. Total N gas losses also increased with N inputs and as soils became coarser textured, but N2O and N2 made up a larger portion of N gas losses as soils became finer textured and as precipitation increased
Learning democracy in social work
In this contribution, we discuss the role of social work in processes of democracy. A key question in this discussion concerns the meaning of ‘the social’ in social work. This question has often been answered in a self-referential way, referring to a methodological identity of social work. This defines the educational role of social work as socialisation (be it socialisation into obedience or into an empowered citizen). However, the idea of democracy as ‘ongoing experiment’ and ‘beyond order’ challenges this methodological identity of social work. From the perspective of democracy as an ‘ongoing experiment’, the social is to be regarded as a platform for dissensus, for ongoing discussions on the relation between private and public issues in the light of human rights and social justice. Hence, the identity of social work cannot be defined in a methodological way; social work is a complex of (institutionalized) welfare practices, to be studied on their underlying views on the ‘social’ as a political and educational concept, and on the way they influence the situation of children, young people and adults in society
- …