8,815 research outputs found

    Initial post-buckling behavior of toroidal shell segments

    Get PDF
    Initial post-buckling behavior of toroidal shell segment

    Buckling of imperfect cylindrical shells under axial compression and external pressure

    Get PDF
    Axisymmetric deformation effects on cylindrical shell buckling under axial compressio

    Dynamic buckling estimates

    Get PDF
    Dynamic buckling estimates for sensitive structures subjected to finite-time loadin

    A preliminary case study of the effect of shoe-wearing on the biomechanics of a horse’s foot

    Get PDF
    Horse racing is a multi-billion-dollar industry that has raised welfare concerns due to injured and euthanized animals. Whilst the cause of musculoskeletal injuries that lead to horse morbidity and mortality is multifactorial, pre-existing pathologies, increased speeds and substrate of the racecourse are likely contributors to foot disease. Horse hooves have the ability to naturally deform during locomotion and dissipate locomotor stresses, yet farriery approaches are utilised to increase performance and protect hooves from wear. Previous studies have assessed the effect of different shoe designs on locomotor performance; however, no biomechanical study has hitherto measured the effect of horseshoes on the stresses of the foot skeleton in vivo. This preliminary study introduces a novel methodology combining three-dimensional data from biplanar radiography with inverse dynamics methods and finite element analysis (FEA) to evaluate the effect of a stainless steel shoe on the function of a Thoroughbred horse's forefoot during walking. Our preliminary results suggest that the stainless steel shoe shifts craniocaudal, mediolateral and vertical GRFs at mid-stance. We document a similar pattern of flexion-extension in the PIP (pastern) and DIP (coffin) joints between the unshod and shod conditions, with slight variation in rotation angles throughout the stance phase. For both conditions, the PIP and DIP joints begin in a flexed posture and extend over the entire stance phase. At mid-stance, small differences in joint angle are observed in the PIP joint, with the shod condition being more extended than the unshod horse, whereas the DIP joint is extended more in the unshod than the shod condition. We also document that the DIP joint extends more than the PIP after midstance and until the end of the stance in both conditions. Our FEA analysis, conducted solely on the bones, shows increased von Mises and Maximum principal stresses on the forefoot phalanges in the shod condition at mid-stance, consistent with the tentative conclusion that a steel shoe might increase mechanical loading. However, because of our limited sample size none of these apparent differences have been tested for statistical significance. Our preliminary study illustrates how the shoe may influence the dynamics and mechanics of a Thoroughbred horse's forefoot during slow walking, but more research is needed to quantify the effect of the shoe on the equine forefoot during the whole stance phase, at faster speeds/gaits and with more individuals as well as with a similar focus on the hind feet. We anticipate that our preliminary analysis using advanced methodological approaches will pave the way for new directions in research on the form/function relationship of the equine foot, with the ultimate goal to minimise foot injuries and improve animal health and welfare

    Pavement Surface Hydrodynamic Drainage

    Get PDF

    Novel Dynamical Resonances in Finite-Temperature Bose-Einstein Condensates

    Full text link
    We describe a variety of intriguing mode-coupling effects which can occur in a confined Bose-Einstein condensed system at finite temperature. These arise from strong interactions between a condensate fluctuation and resonances of the thermal cloud yielding strongly non-linear behaviour. We show how these processes can be affected by altering the aspect ratio of the trap, thereby changing the relevant mode-matching conditions. We illustrate how direct driving of the thermal cloud can lead to significant shifts in the excitation spectrum for a number of modes and provide further experimental scenarios in which the dramatic behaviour observed for the m=0m=0 mode at JILA (Jin {\it et al.} 1997) can be repeated. Our theoretical description is based on a successful second-order finite-temperature quantum field theory which includes the full coupled dynamics of the condensate and thermal cloud and all relevant finite-size effects

    Anatomical and biomechanical traits of broiler chickens across ontogeny. Part II. Body segment inertial properties and muscle architecture of the pelvic limb

    Get PDF
    In broiler chickens, genetic success for desired production traits is often shadowed by welfare concerns related to musculoskeletal health. Whilst these concerns are clear, a viable solution is still elusive. Part of the solution lies in knowing how anatomical changes in afflicted body systems that occur across ontogeny influence standing and moving. Here, to demonstrate these changes we quantify the segment inertial properties of the whole body, trunk (legs removed) and the right pelvic limb segments of five broilers at three different age groups across development. We also consider how muscle architecture (mass, fascicle length and other properties related to mechanics) changes for selected muscles of the pelvic limb. All broilers used had no observed lameness, but we document the limb pathologies identified post mortem, since these two factors do not always correlate, as shown here. The most common leg disorders, including bacterial chondronecrosis with osteomyelitis and rotational and angular deformities of the lower limb, were observed in chickens at all developmental stages. Whole limb morphology is not uniform relative to body size, with broilers obtaining large thighs and feet between four and six weeks of age. This implies that the energetic cost of swinging the limbs is markedly increased across this growth period, perhaps contributing to reduced activity levels. Hindlimb bone length does not change during this period, which may be advantageous for increased stability despite the increased energetic costs. Increased pectoral muscle growth appears to move the centre of mass cranio-dorsally in the last two weeks of growth. This has direct consequences for locomotion (potentially greater limb muscle stresses during standing and moving). Our study is the first to measure these changes in the musculoskeletal system across growth in chickens, and reveals how artificially selected changes of the morphology of the pectoral apparatus may cause deficits in locomotion
    • …
    corecore