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ABSTRACT : Néérlf}/({ B

The initial post-buckling behavior of double curvature shell segments subject
to several loading conditions is determined on the basis of Koiter's general theory
of initial post-buckling behavior. Previously, the classical buckling loads
associated with these shells were shown to be strongly dependent on the two radii
of curvature and their relative magnitudes. Here, the initial post-buckling

behavior and associated imperfection-sensitivity are also seen to be strongly

dependent on the two ¢curvatures. | A /A)aﬁﬂ—b

INTRODUCTION

Among those structures whose buckling strengths are known to be highly
sensitive to structural imperfections are spherical and cylindrical shells subject
to extérnal pressure, axially loaded narrow cylindrical panels, some simple trusses
and, of course, the axially compressed cylindrical shell. The classical (linear)
buckling analysis of such a structure, by itself, is incapable of predicting the
buckling strength. Accurate predictions for a given structure require exact

knowledge of the initial imperfections of the unloaded structure; but, in general,

such information is not at the disposal of either the analyst or designer. To
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date, mainly because of the difficulty of measuring imperfections of actual as well
as test specimens, analytic work has served to provide information as to the
relative imperfecti&n-sensitivity of structures and, thus, to qualitatively
establish the validity or non-validity of the classical buckling analysis.

In this paper some double curvature shell structures, whose classical buckling
behavior haes only recently been studied, are investigated with the view toward
determining their initial post-~buckling behavior and, what is closely related, the
dependence of their buckling strengths cn imperfections in the form of imitial
deviations of the shell middle surface from the perfect configuration. This study
is made within the framework of Koiter's general theory of initial post-bugkling
behavior [1].

The shell segments shown in Figure 1 can be thought of as sections of complete
toroidal shells. The classical buckling analysis of these shells has been given
by Stein and McEiman [2] for three different pressure loadings. Results of their
analysis for the case of buckling under lateral pressure are reproduced in
Figure 2., Here, the buckling parameter, K = prylz/sz (where p 1is the lateral
pressure, D = Eh3/12(1-v2) is the bending stiffness, h is the shell thickness

and v 1is Poisson's ratio) is a function of the length parameter

and the ratic of the two radii of curvatures ry/rx . An elucidation of further
details relevant to this plot, such as boundary conditions, will be given in the
next section. At this point, however, attention is drawn to the significant
difference between the predicted buckling strengths of the bowed-out and the bowéd-
in shells which are otherwise of essentially the same dimensions. On the basis of
the classical buckling analysis the buckling strength of the bowed-out shell can be

several orders of magnitude larger than that of the bowed-in configuration. Ome



might conjecture, and, indeed, this will prove to be the case, that the initial
post-buckling analysis indicates a significantly increased imperfection-sensitivity
hand-in-hand with the higher classical buckling strength.

Two other loading conditions are studied in addition to the lateral pressure -
case. Quite similar, yet more imperfection-semsitive, is the external pressure
case. In the third case the classical and initial post-buckling behavior of the

bowed-out segments subject to axial tension is determined.

CLASSICAL BUCKLING ANALYSIS

Hzre a orief exposition of Stein and McElman's classical analysis is given.
Buckling under axial temsion, although not considered by these authors, is also
included in the results given below. Donnell~type ncniinear shell theory is
erployed in the classical, zs well as the initial post-buckling, analysis of the
toroidal segments. Consideration 1s restricted to segments which are shallow with
respect to the axial coordinate, that is R./rx << 1 . The linear Donnell buckling
equations, given by Stein and McElman, are written here in terms of the normal

displacement w and a stress function £

DV%y + - £ i a0 - =0 1)
T, XX r, s¥y X ,XX AR 4 ‘
and
1 y 1 1
—— v f - —— - —— W = 0 2
Eh rY w,xx rx sYY (2)

where E is Young's Modulus and the assumption of shallowness in the axial

direction permits us to write o= ( x + yy)2 . The additional buckling
? ?

membrane stresses are givem by N_ = f s N = £ and N _ = -f .
X WY y 1 XX Xy ' Xy
In Equation (1) Ng and ANg represent the x and y components of the
resultant membrane stresses associated with the prebuckling deformation of the

perfect shell. Except for a narrow region near each end of the shell the




prebuckling state of stress is homogeneous and, for each loading system
investigated here, i3 linearly dependent on the externally applied load. In this
paper the edge distortions are neglected and, thus, the membrane stresses ANg

and ANg are constant over the entire shell. The load parameter A {is linearly
related to the applied load and Ni and Ng are assumed to be fixed in some
definite manner depending on the particular loading system. Refined analyses for
cylindrical shells {3} accounting for the end distortions have shown that, except
for very short shells, the local end effects can be neglected when the buckle
pattern has only one half wavelength over the axial length. It is expected that
approximate calculations neglecting the edge zone distortions should not introduce
significant errors as long as z > 10 say. Since the underlying aim of this study
is to discover the role of the two radii of curvature, r. andJ ry , in
determining the initial post~buckling behavior, we follow Stein and McElman and
choose the boundary conditions which are most tractable from the point of view of
the analysis. At each end of the shell the normal and circumferential tangential
displacements are required to vanish as is the additional buckling stress

Nx = f,yy and the additional bending stress Mx . In terms of w and £ these
are equivalent to

w o= w,xx = f,xx =f =0 at x =0, % (3)

Other boundary conditions, completely clamped for example, can be expected to give
quite different predictions for the classical buckling load. Nevertheless, it is
felt that a complete study based on these boundary conditions should lend at least
qualitative insight to the imperfection-sensitivity of similar shells with other
edge conditions.

Equations (1) and (2) with the boundary conditions (3) comprise the linear

eigenvalue problem for determining the classical buckling load. The eigenfunction
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is assoclated with the eigenvalue

2,52 2
2 _ 2 (m%4nr_/r )
A = - Dm 1 m24+02)2 + 12z ¥y X

22 (N§m2+Ng;12) w (m%+n2)2

where n = nzlnry . The classical buckiing load Ac corresponds to the minimum
value of Amn among all possible integer values of m and n . For each of the
three loading conditions considered in this paper the minimum value of Aﬁn
always occurs for m = 1 . The minimum with respect to n is found by treating
a as a continuous variable under the assumption, to be verified a posteriori,
that n i1s sufficiently large. The restriction to n > 5 , say, is necessary in
any case since Donnell-type equatioms are being used.

The indicated calculations were carried out with the aid of a digital computer

and will be presented in sections to follow. For the two pressure loadings the

results are in agreement with Stein and McElman's calculations.

DESCRIPTION OF INITIAL POST-BUCKLING ANALYSIS

The linear buckling anaiysis predicts the critical load and associated

buckling mode, or modes, of the structure. A unique buckling mode 1s predicted in

every case considered in this paper. The initial post-buckling analysis of such a
structure provides a single nonlinear, algebraic equation of equilibrium relating
the applied load to the deflection in the buckling mode. The magnitude of the
initial imperfectibn also appears in this equation.

The normal displacement of the buckling mode deflection is

w = Eh sin(wx!%)sin(ny/ry) )
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where n is determined by the classical analysis and £ 1is the mode deflection
relative to the shell thickness h . Initial imperfections in the form of the
buckling ﬁodes are most critical if, indeed, imperfections play any degrading role
at all. In the present analysis the initial deviation of the shells from the

perfect toroidal form is denoted by w and is taken to be
w = Eh sin(nx/l)sin(ny/ry) (5)

where here also, the imperfection £ is measured relative to the shell thickness.
The equilibrium equation obtained from the Koiter analysis, valid in the
initial post~buckling regime, is of the form

(1- %_)g + at?2 +bEd + ... = %-E + order EE + ... (6)

c c
where A/Ac is the ratio of the applied load X to the classical buckling load
Rc . The derivation of this equation and the calculation of the coefficients a
and b are given in the Appendix.

Each of the structure-load combinations considered in this paper is of the
"cubic type'; that is, a is identically zero and the initial post-buckling

behavior is determined by the term bg23 in the equilibrium equation. Thus the

governing equation is

(- Mg +pe3 = =% | ™
._c y

This equation is asymptotically valid for small £ and E .

The load-deflection behavior of the cubic structure is depicted in the two
plots of Figure 3. The perfect structure, £ = 0 , suffers no deflection in the
E mode prior to buckling. At A = AC bifurcation from the prebuckling state
occurs. If b > 0 the applied load A increases with increasing deflection £ ;
while if b < 0 the equilibrium curve of A vs. & falls in the initial post-

buckling region. The effect of an initial imperfection on the load-deflection



SESURRTSE =

behavior is also shown in these two plots. Only in the latter case, namely

b < 0, is the cubic structure imperfection-sensitive in the sense that

‘imperfections result in reduced values of the maximum load the structure can
' *
support. An expression relating the buckling load (maximum load) A  of the

imperfect structure to the imperfection magnitude for the case b < 0 is easily

found from Equation (7) in conjunction with the condition %% = 0 o This is
% *
A \3/2 _3/3 =1 A
(- 1% = 232 5 1 -

The plot of A*/Ac vs. V-b |E| is given in Figure 4. If V=b 1s of order unity,
imperfections which are small relative to the shell thickness (i.e., £ a small
fraction §f unity) will result in large reductions of the buckling load.

The results of the b calculation for the three loading cases are presented
and discussed in the next three sections; and as we have mentioned, the details of

the calculations are left for the Appendix.

TOROIDAL SEGMENT SUBJECT TO LATERAL PRESSURE

The prebuckling state of stress of a perfect, shallow toroidal segment subject
to lateral pressure p 1is uniform, except in a narrow region near the ends of the

shell, and is given by

=0 ad ANO = —pr (8)

Results from the classical buckling analysis have been referred to in the
introduction and are shown in Figure 2. This is a plot of the buckling parameter
X = pryzz/nzD as a function of z = (1-v2)l/2£2/ryh for several values of
ry/rx

Figure 5 contains plots of b/ (1-v2) , again, as a function of 2z for several

values of ry/rx . The bowed-out segments, ry/rx > 0 , are imperfection-sensitive

({.e., b < 0 ) over a major part of the range of z . The more the toroidal shell
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is bowed-out the more negative is b and, thus, the more sensitive the structure
to imperfections., There is a significant range, even for the cylindrical shell
(ry/rx = 0) , for which v~b 1s of order unity, and small imperfections relative
to the shell thickness will, therefore, result in significant reductions in the
buckling pressure. For configurations which are sufficiently bowed-in b is
actually positive, although quite small for sufficiently large 2z , over the entire
range of 2z . The bowed-out shell has a higher imperfection-sensitivity
associated with its considerably higher classical buckling load.

The initial slope of the generalized load-deflection curve of the perfect
shell can also be determined from the initial post-buckling analysis. This
calculation is given in the Appendix. The resulting pressure vs. effective change

in volume relation is

£

ave

R

e = 2o+ o5 -1) (9
oC Cc

where wave 1s the average normal displacement of the shell and woc is the pre-
buckling normal displacement at the critical pressure. The coefficient « , also
calculated in the Appendix, is plotted in Figure 6 as a function of 2z for
several values of ry/rx .

The results for the lateral pressure buckling of a cylindrical shell

Amazigo [4]. The method employed here is the same as that used by these authors.
Koiter {5] hés determined the initial post-buckling behavior of narrow cylindrical
panels under axial compression. Like the toroidal shells considered here the
narrow panel has a unique buckling mode and its initial post-buckling behavior is
determined by the coefficient b of the cubic term in Equation (7). Koiter finds
that depending on the narrowness of the panel the post-buckling behavior can

correspond to either an initially rising or falling load-deflectiom curve.



TOROIDAL SEGMENTS SUBJECT TO EXTERNAL PRESSURE

In this case there is a prebuckling axial compressive stress in addition to

the circumferential stress according to
ANO = - l-pr and AN? = -pr_(l-r_/2r)) (10)
X 2%y y y y X

The results of the classical buckling analysis are shown in Figure 7. The trends
are similar to the lateral pressure case although it is noted that the discrepancy
between the buckling pressures of the bowed-in and bowed-out shells 1s emphasized
even more.

Plots of b/(1-v?) vs. 2z for different values of ry/rx are shown in
Figure 8. As would be expected the shells are more imperfection-sensitiﬁe than in
the previous case.

When ry/rx = 1 the shell is locally spherical at each point on its surface
and the prebuckling stresses are exactly those corresponding to a complete
spherical shell of similar radius and thickness, namely Nx = NY = - %-pr . The
classical buckling pressure of the ry/rx = 1 case for large 2z 1s also that for

a complete spherical shell

2 hy2
p = ———E(})

43(1—v2)

Furthermore, when ry/rx = 1 , there is not a unique buckling mode, but a large
number of buckling modes associated with the classical buckling pressure ahd the
analysis employed in this paper is no longer valid. The multimode post-buckling
behavior of a shallow section of a complete spherical shell has been studied in
Reference [6]. The spherical shell is a "quadratic type" structure and the
buckling load-imperfection relation for small imperfectioms E 1is of the form

1-an g B2

while the analogous relation for a “cubic" structure for small E is
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1= % (/5 §)2/3

The transition from the cubic type structure, ry/rx < 1 , to the inherently more
imperfection-sensitive quadratic character is reflected in the plots of b vs. z
for values of ry/rx near unity.

The initial post-buckling behavior of externally pressurized cylindrical shells
has also been studied by Budiansky and Amazigo and their results coincide with the

ry/rx = 0 calculations presented here.

TOROIDAL SEGMENTS SUBJECT TO AXIAL TENSION

The prebuckling state of stress in the perfect toroidal shell resulting from

an applied axial stress resultant No is
0 = 0 0 TE ey} 0 I l
AN N ’ )\N N¥r /r ( )

and a compressive circumferential stress will be induced only if ry/rx >0 . In
other words, buckling in tension‘occurs only for the bowed-out shells. The results
of the linmear buckling analysis are given in Figure 9 where, now, the buckling
parameter is K = N222/x2D .

The b plots, analogous to those of Figures 5 and 8, are presented in
Figure 10. Apparently, axial buckling is less influenced by initial shell

the

o=

imperfections than the previous pressure loading cases. If ry/rx <
toroidal segments appear to be relatively insensitive to imperfections. For values
of the length parameter less than a certain value, depending on ry/rx s b is
positive.and the load increases in the initial post-buckling region.

Figure 11 gives plots of «k which appears in the load-elongation relation of

the perfect shell
(G -1) (12) |

vhere € 1is the axial elongation and €oc is the prebuckling axial elongation at
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the critical load. Depending on the value of ry/rX and 2z , the slope of the
initial post-buckling load elongation curve can be either almost that of the pre-
buckling curve or sharply falling. These calculations are given in the Appendix.

Yao {7] compared experimentally obtained buckling loads of axially loaded,
truncated hemispheres with predictions based on a linear buckling analysis. The
results presented in this section for segments of spheres, ry/rx =1, are not
directly applicable since both Yao's calculations and the tests correspond to
clawped end conditions. On the other hand, qualitative agreement should be
‘expected with respect to the degree of imperfection-sensitivity of clamped and
simply supported shells. The test specimens were sufficieﬁtly short (i.e., R/rx
sufficiently small) to justify, if only approximately, the shallowness assumptilon
made in the present analysis. The test buckling loads ranged from one third to
slightly over one half the classical buckling loads with the length parameters
falling in the range 50 < z < 160 ., It is interesting to note that the range of
the z's of the test specimens falls within the imperfection-sensitive range pre-

dicted by the present analysis.

APPENDIX: INITIAL POST-BUCKLING CALCULATIONS

DONNELL-TYPE NONLINEAR SHELL EQUATIONS

The membrane strains € 0 ey and exy of Donnell-type theory are related

to the normal and tangential displacements to the shell middle surface w , u , v

by
e =u_ +wr + l-wz +w W
x ,X X 2 ,X sX X
e =v <+ w/r + l-w2 + W W (13)
y Y y 2,y Y »Y
and 2¢ =v +4+u +w w +wW W W

+w v
Xy X 2y 2 X Y X Y X Y



-12-

where w 1is the initial normal deflection of the shell middle surface from the

perfect toroidal segment with radii r. and ry . The bending strain-displacement

relations are linear: k = ~w s k= ~-w and k= -w . The stress- '
relat.ons % XX y Y Xy XY Stress-
strain relations are also linear: Ee¢ =N - uwW , M = D(k +vk ) , etc.

X x y X X y

Equations of equilibrium can be formulated in terms of a variational principle

of virtual work. For Donnell theory the statement of this principle is

J(N_8e_+N _Se_+2N__ Se_ +91 6k +M_6k_+2M
X X'y Yy Xy XYy X X Yy VY X

ka )ds
S y

y

+ [ap%w ds - [AN%6u das = 0 (14)
S c

where Apo is the applied pressure, AN® 15 the stress resultant applied at the
ends of the shell and §e_ = Gu’x + GW/rx + w’xdw’x + ﬁ’xﬁw’x , 8k = -Gw,xx , etc,
The scalar load parameter A has been introduced to emphasize that for each
loading combination considered In this paper the axial load and lateral pressure
ere fixed in a definite ratio. Thus, N0  and p0 are assumed fixed in a manner
appropriate to the particular loading combination. The differential equations
associated with this variational principle are the three equilibrium equations,
which when expressed in terms of the three displacements u , v , w , provide the
set of Donnell-type equations governing the deformation of the shell. Boundary
conditions in this analysis are taken to be v (the circumferential displacement)

=y = MX = 0 and Nx = AN? at the ends of the shell, x = 0,2 .

The prebuckling stresses in the perfect shell for a given lateral pressure

loading Abo and applied axial stress A0 are uniform, except for deviations in
a narrow region near the ends of the shell which will be neglected in this aralysis..

The nonzero prebuckling stresses and deformations are

0 = AN© 0 o= (o0 0
AN AN. , ANY Alp ry+N ry/rx) (15)
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0 i_rl 0 0
Al = - = [N (ry/rx+v) +p ry]
(16)
a0 o A0 2 0 ‘
and Au % Eh[N ((ry/rx) +2vry/rx+1) +p ry(ry/rx+v)]

INITIAL POST-BUCKLING ANALYSIS FOR UNIQUE MODE BUCKLING

The notation and development of Koiter's general theory displayed here are
iaken from Reference [8]. Only the outline and essential results of the theory
will be given. The reader is referred to Reference [8] or Koiter's own work [1]
for omitted details and points of rigor which will not be re-established here.

For brevity, the stress, strain and displacement fields are denoted by ¢ , € and

v, respectively.+ The magnitude of the applied load system is taken to be directly
proportional to the load parameter A .

The strain-displacement relations of the perfect shell are written

symbolically as
e = Ly(w) + 5 La(u) an

where L; and L, are, then, homogeneous functionals which are linear and
quadratic, respectively, in u . In the presence of an initial deflection of the

unloaded structure u the strain resulting from an additional displacement u is
€ = Li(u) + %Lz(u) + Ln(u,ﬁ) (18)

where Ljj(u,u) = Lyj;(u,u) is the bilinear, homogeneous functional of u aund u

which appears in the identity

Ly (utu) = Ly(u) + 2Ly3(u,u) + Ly(u)

The stress—-strain relations are linear and are denoted by

In the general development u 1s a generalized expression for the displace-
ments. It should not be confused with the axial displacement in the Domnell

theory which bears the same symbol.
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o = Hj (g) (19)
where H; i1is a homogeneous, linear functional,

Equations of equilibrium are formulated via the principle of virtual work.

In compact form this principle (Equation (14) for Donnell theory) is written as

{0,8¢} = AB1(Su) = 0 (20)

where {0,8e} d1s the internal virtual work of the stress field ¢ through the
strain variation 6ec and AB;(Su) is the external virtual work of the load
system of intensity A through the admissible displacement variation du .

The prebuckling deformations of the perfect shells, Equation (16), are
linearly dependent on the applied load and are abbreviated as Aug . Since the
prebuckling strains are linearly dependent on the displacements, i.e., Lp{ug) =0 ,
the prebuckling stresses, Equation (15), are denoted by A0% and are related to
Aug by 0% = Hy[L;(up)] . To discover the eigenvalue Ac and eigenmode U,

for classical buckling we set

u=2iug+u
c c

in the field equations and retain only the linear terms in the buckling mode u, -
The resulting variational equation is, in the compact notation,

Ac{co,Lll(uc,Gu)} + {sc,Ll(Gu)} =0 (21)

where sc = Ll(uc) . When this statement is tramslated into Donnell notation the
differential equations associated with this variational equation are the linear
buckling equations.which, when written in terms of a stress function and the
normal displacement in the usual manner, become Equations (1) and (2).

As previously mentioned, each structure-loading combination investigated in
this paper has a unique buckling mode assoclated with the classical buckling load.

To study the ipitial post-buckling behavior one writes the total displacement,

quite generally, as
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u = Aug +gu, +u (22)

where u, is now considered normalized in magnitude in a definite way. The dis-

placement U is taken to be orthogonal to u, in the sense
N
{ogsLyg(u W)} = 0 (23)

When a structure is imperfection-sensitive, imperfections in the form of the

buckling mode are most critical. In this study the imperfection is taken as

u = gu, (24)

The initial post-buckling analysis provides an algebraic equilibrium equation
relating £ , £ and the load parameter A . This equation is a representation

which is uniformly valid for small £ and & . To obtain this equation one writes
+ ElEuy +E2up +. . ] + ... (25)

and then u as given by (22), with the aid of Equations (17)-(19), is
substituted into the variational equilibrium equation. The requirement that
Equation (20) be satisfied for the variation &u = ucdg gives the scalar equation

relating X to ¢ and ¢

~£0 M) {og,La ()} + 2 £2(s_,Ly(u )}
+ 53[2{sc,1»11(uc,u2)} + {s2,L2(u)} +% {Hx(Lz(uc)),Lz(uc)}]

+0(EY) + .. = -Br{og,L2(u )} + 0(RE,EY) + ... (26)

where s, = Ll(uc) and sy = L1(uz) . For all variations ©&u orthogonal to u,
Equation (20) provides the variational equation necessary for determining u,

A 00,111 (uz, 8w} + {s2,L1(bu)} =

- {ssLi1(u ,60)} = %-{Hl[Lz(uc)],Ll(Gu)} (27)
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Equation (26) can be written in the form of Equation (6) given in the body of

the report, i.e.,

(1- %—)g +at2+bEd+ ... = %— E+ .. (6)
c c

where the coefficients a and b are

3
. E{SC,LZ(uc)} 28)
~lc{co,L2(uc)}
and
1
L 2{sc,L11(uc,u2)} + {sz,Lz(uc)} + E‘{H1[Lz(uc)],L2(uc)} 29)

-Ac{do,Lz(uc)}

CALCULATION OF THE b COEFFICIENT FOR TORCIDAL SEELL SEGMENTS

The buckling mode (4) is such that the A vs. £ relation of the perfect
toroidal shell can depend only on the magnitude of £ and not on its sign and,

thus, a must be zero. This can be verified directly by noting that

{s ,Lp(u )} = (£ _ w2 +f _ w2 )ds
(o c S

-2£ W W
Cy¥Y C,X C,XX C,¥ C,Xy C,X C,¥

= 0

where, consistent with Equation (4),

- El'-1-:-)_-5—3-2-‘3‘-‘s:I.n(-nx/sL)sin(ny/ry) (30)

2r
y

and 14n2r_J/r
A = A A 3
(1+a2)2
The initial post-buckling behavior, then, is determined by b as long as this
coefficient does not also vanish. Evaluation of b necessitates solving for uz; .

A straightforward translation of the variational Equation (27) into Donnell
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notation followed by the usual calculus of variations procedure leads to three
simultaneous partial differential equations for uz , vz and wy; . These

equations are

DV, + =N + L (@ _yx0y -y =f _w __+f _w -
r X ry Yy c X V2 » XX c y 2,yy C,¥YY C,XX C,XX ¢,yy
_ch,xywc,xy - ; lﬁh [——{wc x é,y) +-;;(w2’y+vw§’ )]
N(Z) + N(§Zy = - %-;%%;[(wé’x+vﬁg’y)’x + (l-v)(wc,ch,y),y]
N2 4 ) %1 : (G2 w2 ) o+ Q=) Gy e ) ]

1
with the boundary conditions w, = w =vy, =0 and Nﬁz) + ;{Eh/(l-vz)} .

2 XX

2 pow2 ] = } 2y _
[wc,x+v“c,y] 0 at x = 0,4 , where Né ) -

[uz’X+w2/rx+v(v2’y+w2/ry)] , ch.

These equations are reduced to a much more manageable form if the stress

function f; is introduced according to

1 Eh
X 2,5 24, e xe,y?
N(2) = §f - l..Eh_(WZ +vw2 )
2,xx 1-y2 CoY  CX
1 Eh-
2 | - - T T
N.(.") fz’xy 2 14+v WC,X C,y

Then the equations for wy; and £, become

‘ L l—_ 1 - AN - 0
DV + ry f2,xx + rx f2,yy c x Y2 s XX Ny 2. yy
= f W + f W - 2f W (31)
C,¥Y C,XX C,XX C,yy C,yXy C,Xy

and, secondly, the compatibility equation

1 g 1 L w2 -
Eh v f r wz,xx r w2,yy wc,xy wc’xch’yy (32)
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and the boundary conditions reduce to

= = =0 at x=0,8

A stress function has been introduced and, thus, a further condition is that the

tangential displacements be single valued over a complete circuit of the shell.

For v, this condition is equivalent to

2nr w ’
[ Ve, v Y-t - —z—]dy =0 {33)
0 Eh*"2,xx "72,yy 2 e,y Ty _

The right hand sides of Equations (31) and (32) are respectively,

an3a o 2 -
- EE--é-r(jylﬁ’-)---(cos(21!x/JL)+<:os(Zny/ry)) and %-h2n2(n/l)“(cos(Zﬂx/£)+cos(2ny/ry)) .
y

The solution to Equations (31) and (32) can be written in the separated form

-] L3
Wy = y aisin(iwxll) + cos(2ny/r_) ) yisin(inxlz) (34)
1=1,3,5.. ¥ 1=1,3,5..
and
fp = zBisin(inxlz) + cos(2ny/ry)ZGisin(inx/£) (35)

-
al

d the coefficients of these series can be determined with the Galerkin

procedure, One finds

'

e, = w(l—vz)llzﬁzhai = ﬂ(l-vz)llzﬁzh(Aiz+1/2)/Qi

™
]

F2Eh38 o anlrh3 (a4 f0_2
; = ™“Eh Bi m4Eh® (144 /24z+AcJX/2 Az /T )/Qi
4n(1-v2)1/252h§i = 4r(1-v2) Y Za2n A (124402)2 + 12/2 + 202x /] /B
5, = Anﬁzah3§i = 4mn2Eh3[w2(i2+4n2)2/24z + Acﬁ§12/2
NO0R2 - 22402 2
+ ZACNyn z{1%+4n ry/rx)A/w ]/Hi

i=1, 3,5 ...
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with

Q = 1(12-4)(n“i“/12z+xcﬁ§n212+z)/4

H, = i[n" (1%4+402)4/122 + Acﬁ§n212(12+452)2 + Acﬁ34w2£2(12+452)2

24702 2
+ z(1+4n ry/rx) ]

1/2 1/2

and where A N0 =) (1-v?) ryNg/EhZ and xcﬁg = A (1-v®) ryng/Eh2 .

That this solution satisfies the single valued conditions can be verified by
direct substitution into Equation (33), for example. Alternatively one notes
izmediately that the y dependent terms in (34) and (35) satisfy Equation (33).
Then one can recognize that Equation (32), for the y independent part of the
solution, when integrated twice with respect to x in conjunction with the
ooundary conditions is precisely conditionm (33). Similarly one can show that up
is single valued.

Now, b can be calculated using Equation (29) if it is noted that

) = <y [(0w2  +N0g2
Xc{o'o ,LZ (uc)} Acé(wac’x-{.Nywc ,Y)ds

{sc,Lll(uc,uz)} = éifc,yywc,xWZ,x'+ fc,xch,ywz,y

= € (w

£ )1ds
C,Xy

W +w W
C,X 2,y €,y 2,%x

and

{s2,La( )} + 3 {H[La(u )] Lo(u)} =

J(£ 2 +f _ wl -2f

ds
3 2,yywc,x 2,XX C,¥ )

W A\
2,XY C,X ¢,y

The results of this calculation are
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__=8(1-v)a*, r= -
b = 8_3 30_2 {(ZBi —~;i—— + 226i %ﬁnzlz
xc(».xmyn ) (1°-4)

~2a(Ja, ——+ 2]y, DI (36)

R CLE)

For the three loading cases presented in this paper the b calculations were
made with the ald of a digital computer. The series in Equation (36) were
evaluated by taking a sufficiently large number of terms to insure that the
truncation error was less than 1/10 of one percent.

The generalized load-deflection relation for the lateral pressure case was

calculated directly from the expression for the total normal displacement
w = Awg + Ewc + Ezwz + ...

Since fwcdS =0 and &2 = -(1~A/Ac)/b , the initial post-buckling load-deflection
relation between the average lateral deflection of the perfect shell and the

lateral pressure is

wave A A

— = = 4+ n(l- ) (37)
w A A

oc c c

where LA Acwo is the prebuckling displacement at the critical pressure and

1
n= 27r b w IWzdS
y° Toc S
This coefficient was calculated using a series representation, not given here,
which was obtained from the expression for wp, Equation (34). It is more

convenient to. rewrite Equation (37) in the. form given in the body of the ﬁaper,

namely,
(A 1), 9

where « = -1/n . Plots of x as a function of 2z for several values of
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ry/rX are given in Figure 6. Neglection of the distortion of the shell near its
ends places the same limitation on the load-deflection relation and buckling load-

imperfection relation as has been remarked on previously with regard to the

classical buckling analysis.

In a similar fashion the axial load-elongation relation for the initial post-

buckling regime of a perfect shell in axial temsion can be calculated directly.

The average elongation is

S S 3 S w1 o2
€= 2ur éEEthx vNy) T, 2 W,x]ds

The parameter in the load-deflection relation, Equation (12), is again

¢ = =1/n where now

=___'i___.f[l..(f ~vf )_E_l‘.WZ 1ds
n 21Trbe°c 3 Eh "2,yy ~2,xx r, 2 "c,x

and €oc is the axial elongation at the onset of buckling. A series representation
for n 1is obtained in a straightforward way. The results of the calculations are

shown in Figure 11 as plots of x vs. 2.
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