3,250 research outputs found

    Investigation on the trophic state of the North Sea for three years (1994?1996) simulated with the ecosystem model ERSEM ? the role of a sharp NAOI decline

    No full text
    International audienceApplying the ecosystem model ERSEM to the Northwest-European shelf (48°?63°N, 15°W?12°E) the years 1994-1996 were simulated, which exhibit an extremely strong transition in North Atlantic Oscillation index (NAOI): from a high-NAOI to a low-NAOI regime. In order to be far enough from the boundaries of the model area the results and budgets are focussed on the North Sea area. For this region the model was validated against climatological values of nitrate as representative nutrient. For all three years the North Sea was found to be net heterotrophic: organic material was imported, inorganic material was exported. The strength of this "remineralisation-machine" was large during NAOI-high years (1994 and 1995). It was weaker in 1996 with a low NAOI. This was caused by higher net primary production in the northern North Sea during summer 1996. In this year the stratification was weaker and began later allowing the deep nutrient-rich water in the northern North Sea to be mixed into the upper layers also during early summer

    High-energy overtone spectroscopy of some deuterated methanes

    Get PDF
    High-energy overtone photoacoustic spectroscopy of gas phase CHD3 (ΔνCH=5,6, and 7), CH2D2, CH3D, and CH4 (ΔνCH=6) is reported. The overtone and combination bands of CHD3 display partially resolved rotational structure with laser limited linewidths (~0.5 cm^−1). A combination sum analysis is used to generate excited state rotational constants B'. We present an analysis of the Fermi resonances of CHD3 which indicates strong interactions of the CH stretch with degenerate bending modes. The relative intensities of the Fermi interacting states are in agreement with those calculated from an analysis based on frequency shifts and a two or three level model. However, the rotational B' constants are not explained by such simple models indicating further interactions with states as yet unobserved. An upper limit of 10 cm^−1 is estimated for the splitting of the |6,0>± local mode states for CH2D2, giving support to a description based on the local mode picture. For CH3D and CH4 the spectra are apparently congested by overlapping overtone and combination bands and perhaps other mechanisms not identified in this work. Generally, our results emphasize the importance of the interactions of CH stretching with CH bending motions

    Lessons from spatial and environmental assessment of energy potentials for Anaerobic Digestion production systems applied to the Netherlands

    Get PDF
    Anaerobic digestion (AD) can play an important role in achieving the renewable energy goals set within the European Union. Within this article the focus is placed on reaching the Dutch local renewable production goal set for the year 2020 with locally available biomass waste flows, avoiding intensive farming and long transport distances of biomass and energy carriers. The bio-energy yields, efficiency and environmental sustainability are analyzed for five municipalities in the northern part of the Netherlands, using three utilization pathways: green gas production, combined heat and power, and waste management. Literature has indicated that there is sufficient bio-energy potential in local waste streams to reach the aforementioned goal. However, the average useful energy finally produced by the AD production pathway is significantly lower, often due to poor quality biomass and difficult harvesting conditions. Furthermore, of the potential bio-energy input in the three utilization pathways considered in this article, on average: 73% can be extracted as green gas; 57% as heat and power; and 44% as green gas in the waste management pathway. This demonstrates that the Dutch renewable production goal cannot be reached. The green gas utilization pathway is preferable for reaching production goals as it retains the highest amount of energy from the feedstock. However, environmental sustainability favors the waste management pathway as it has a higher overall efficiency, and lower emissions and environmental impacts. The main lessons drawn from the aforementioned are twofold: there is a substantial gap between bio-energy potential and net energy gain; there is also a gap between top-down regulation and actual emission reduction and sustainability. Therefore, a full life cycle-based understanding of the absolute energy and environmental impact of biogas production and utilization pathways is required to help governments to develop optimal policies serving a broad set of sustainable objectives. Well-founded ideas and decisions are needed on how best to utilize the limited biomass availability most effectively and sustainably in the near and far future, as biogas can play a supportive role for integrating other renewable sources into local decentralized energy systems as a flexible and storable energy source. (C) 2016 Elsevier Ltd. All rights reserved

    Equilibrium shapes and energies of coherent strained InP islands

    Get PDF
    The equilibrium shapes and energies of coherent strained InP islands grown on GaP have been investigated with a hybrid approach that has been previously applied to InAs islands on GaAs. This combines calculations of the surface energies by density functional theory and the bulk deformation energies by continuum elasticity theory. The calculated equilibrium shapes for different chemical environments exhibit the {101}, {111}, {\=1\=1\=1} facets and a (001) top surface. They compare quite well with recent atomic-force microscopy data. Thus in the InP/GaInP-system a considerable equilibration of the individual islands with respect to their shapes can be achieved. We discuss the implications of our results for the Ostwald ripening of the coherent InP islands. In addition we compare strain fields in uncapped and capped islands.Comment: 10 pages including 6 figures. Submitted to Phys. Rev. B. Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Formation and stability of self-assembled coherent islands in highly mismatched heteroepitaxy

    Full text link
    We study the energetics of island formation in Stranski-Krastanow growth within a parameter-free approach. It is shown that an optimum island size exists for a given coverage and island density if changes in the wetting layer morphology after the 3D transition are properly taken into account. Our approach reproduces well the experimental island size dependence on coverage, and indicates that the critical layer thickness depends on growth conditions. The present study provides a new explanation for the (frequently found) rather narrow size distribution of self-assembled coherent islands.Comment: 4 pages, 5 figures, In print, Phys. Rev. Lett. Other related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Universality of the Small-Scale Dynamo Mechanism

    Full text link
    We quantify possible differences between turbulent dynamo action in the Sun and the dynamo action studied in idealized simulations. For this purpose we compare Fourier-space shell-to-shell energy transfer rates of three incrementally more complex dynamo simulations: an incompressible, periodic simulation driven by random flow, a simulation of Boussinesq convection, and a simulation of fully compressible convection that includes physics relevant to the near-surface layers of the Sun. For each of the simulations studied, we find that the dynamo mechanism is universal in the kinematic regime because energy is transferred from the turbulent flow to the magnetic field from wavenumbers in the inertial range of the energy spectrum. The addition of physical effects relevant to the solar near-surface layers, including stratification, compressibility, partial ionization, and radiative energy transport, does not appear to affect the nature of the dynamo mechanism. The role of inertial-range shear stresses in magnetic field amplification is independent from outer-scale circumstances, including forcing and stratification. Although the shell-to-shell energy transfer functions have similar properties to those seen in mean-flow driven dynamos in each simulation studied, the saturated states of these simulations are not universal because the flow at the driving wavenumbers is a significant source of energy for the magnetic field.Comment: 16 pages, 9 figures, accepted for publication in Ap

    {Rearrangement of the antiferromagnetic ordering at high magnetic fields in SmFeAsO and SmFeAsO0.9_{0.9}F0.1_{0.1} single crystals

    Full text link
    The low-temperature antiferromagnetic state of the Sm-ions in both nonsuperconducting SmFeAsO and superconducting SmFeAsO0.9_{0.9}F0.1_{0.1} single crystals was studied by magnetic torque, magnetization, and magnetoresistance measurements in magnetic fields up to 60~T and temperatures down to 0.6~K. We uncover in both compounds a distinct rearrangement of the antiferromagnetically ordered Sm-moments near 354035-40~T. This is seen in both, static and pulsed magnetic fields, as a sharp change in the sign of the magnetic torque, which is sensitive to the magnetic anisotropy and hence to the magnetic moment in the abab-plane, ({\it i.e.} the FeAs-layers), and as a jump in the magnetization for magnetic fields perpendicular to the conducting planes. This rearrangement of magnetic ordering in 354035-40~T is essentially temperature independent and points towards a canted or a partially polarized magnetic state in high magnetic fields. However, the observed value for the saturation moment above this rearrangement, suggests that the complete suppression of the antiferromagnetism related to the Sm-moments would require fields in excess of 60~T. Such a large field value is particularly remarkable when compared to the relatively small N\'{e}el temperature TN5T_{\rm N}\simeq5~K, suggesting very anisotropic magnetic exchange couplings. At the transition, magnetoresistivity measurements show a crossover from positive to negative field-dependence, indicating that the charge carriers in the FeAs planes are sensitive to the magnetic configuration of the rare-earth elements. This is indicates a finite magnetic/electronic coupling between the SmO and the FeAs layers which are likely to mediate the exchange interactions leading to the long range antiferromagnetic order of the Sm ions.Comment: 10 pages, 7 figures, accepted in Phys. Rev.

    Interplay of composition, structure, magnetism, and superconductivity in SmFeAs1-xPxO1-y

    Full text link
    Polycrystalline samples and single crystals of SmFeAs1-xPxO1-y were synthesized and grown employing different synthesis methods and annealing conditions. Depending on the phosphorus and oxygen content, the samples are either magnetic or superconducting. In the fully oxygenated compounds the main impact of phosphorus substitution is to suppress the N\'eel temperature TN of the spin density wave (SDW) state, and to strongly reduce the local magnetic field in the SDW state, as deduced from muon spin rotation measurements. On the other hand the superconducting state is observed in the oxygen deficient samples only after heat treatment under high pressure. Oxygen deficiency as a result of synthesis at high pressure brings the Sm-O layer closer to the superconducting As/P-Fe-As/P block and provides additional electron transfer. Interestingly, the structural modifications in response to this variation of the electron count are significantly different when phosphorus is partly substituting arsenic. Point contact spectra are well described with two superconducting gaps. Magnetic and resistance measurements on single crystals indicate an in-plane magnetic penetration depth of 200 nm and an anisotropy of the upper critical field slope of 4-5. PACS number(s): 74.70.Xa, 74.62.Bf, 74.25.-q, 81.20.-nComment: 36 pages, 13 figures, 2 table

    Is there an association between wheezing and constipation in preschool children? Explanations from a longitudinal birth cohort

    Get PDF
    Objective: To assess whether wheezing and atopic dermatitis were associated with constipation in preschool children and to what extent shared risk factors contribute to this relationship. Methods: A population-based sample of 4651 preschool children was used. At the age of 24, 36 and 48 months, a parental report of functional constipation was available according to the Rome II criteria, and data on atopic dermatitis and wheezing were available using age-adapted questionnaires from the International Study of Asthma and Allergie
    corecore