225 research outputs found

    Assembly and force measurement with SPM-like probes in holographic optical tweezers

    Get PDF
    We report a high fidelity tomographic reconstruction of the quantum state of photon pairs generated by parametric down-conversion with orbital angular momentum (OAM) entanglement. Our tomography method allows us to estimate an upper and lower bound for the entanglement between the down-converted photons. We investigate the two-dimensional state subspace defined by the OAM states ±ℓ and superpositions thereof, with ℓ=1, 2, ..., 30. We find that the reconstructed density matrix, even for OAMs up to around ℓ=20, is close to that of a maximally entangled Bell state with a fidelity in the range between F=0.979 and F=0.814. This demonstrates that, although the single count-rate diminishes with increasing ℓ, entanglement persists in a large dimensional state space

    Non-spherical optically trapped probes: Design, control, and applications

    Get PDF
    In this proceedings paper we show describe how a microtool can be assembled, and tracked in three dimensions such that its full rotational and translational coordinates, q, are recovered. This allows tracking of the motion of any arbitrary point, d, on the microtool's surface. When the micro-tool is held using multiple optical traps the motion of such a point investigates the inside of an ellipsoidal volume - we term this a 'thermal ellipsoid. We demonstrate how the shape of this thermal ellipsoid may be controlled by varying the relative trapping power of the optical traps, and adjusting the angle at which the micro-tool is held relative to the focal plane. Our experimental results follow the trends derived by Simpson and Hanna

    Employee Stock Ownership and Financial Performance in European Countries: The Moderating Effects of Uncertainty Avoidance and Social Trust

    Get PDF
    This study investigates how the effect of employee stock ownership on financial performance may hinge on the diverse cultural and societal contexts of European countries. Based on agency and national culture theories, we hypothesize that the positive relationship between employee stock ownership and return on assets (ROA) is stronger in those nations with lower uncertainty avoidance and higher social trust. Using a multisource, time‐lagged, large‐scale dataset of 1,741 firms from 21 countries in Europe, our multilevel, random coefficient modeling analysis found evidence for these hypotheses, suggesting that uncertainty avoidance and social trust serve as important contextual cues in predicting the linkage between employee stock ownership and financial performance. Our supplemental analysis with distinction between the managerial and nonmanagerial employee stock ownership further indicates managerial employee stock ownership has a direct positive effect on ROA. Although nonmanagerial employee stock ownership had a nonsignificant association with ROA, the relationship was positive and significant when uncertainty avoidance was low and social trust was high. This research contributes to the existing literature by illuminating some of the contextual influences altering the effectiveness of employee stock ownership. Our findings also offer practical suggestions for effectively using employee stock ownership

    Insights into the Second Law of Thermodynamics from Anisotropic Gas-Surface Interactions

    Full text link
    Thermodynamic implications of anisotropic gas-surface interactions in a closed molecular flow cavity are examined. Anisotropy at the microscopic scale, such as might be caused by reduced-dimensionality surfaces, is shown to lead to reversibility at the macroscopic scale. The possibility of a self-sustaining nonequilibrium stationary state induced by surface anisotropy is demonstrated that simultaneously satisfies flux balance, conservation of momentum, and conservation of energy. Conversely, it is also shown that the second law of thermodynamics prohibits anisotropic gas-surface interactions in "equilibrium", even for reduced dimensionality surfaces. This is particularly startling because reduced dimensionality surfaces are known to exhibit a plethora of anisotropic properties. That gas-surface interactions would be excluded from these anisotropic properties is completely counterintuitive from a causality perspective. These results provide intriguing insights into the second law of thermodynamics and its relation to gas-surface interaction physics.Comment: 28 pages, 11 figure

    Tune in to your emotions: a robust personalized affective music player

    Get PDF
    The emotional power of music is exploited in a personalized affective music player (AMP) that selects music for mood enhancement. A biosignal approach is used to measure listeners’ personal emotional reactions to their own music as input for affective user models. Regression and kernel density estimation are applied to model the physiological changes the music elicits. Using these models, personalized music selections based on an affective goal state can be made. The AMP was validated in real-world trials over the course of several weeks. Results show that our models can cope with noisy situations and handle large inter-individual differences in the music domain. The AMP augments music listening where its techniques enable automated affect guidance. Our approach provides valuable insights for affective computing and user modeling, for which the AMP is a suitable carrier application

    Energy-efficient scheduling of flexible flow shop of composite recycling

    Get PDF
    Composite recycling technologies have been developed to tackle the increasing use of composites in industry and as a result of restrictions placed on landfill disposal. Mechanical, thermal and chemical approaches are the existing main recycling techniques to recover the fibres. Some optimisation work for reducing energy consumed by above processes has also been developed. However, the resource efficiency of recycling composites at the workshop level has never been considered before. Considering the current trend of designing and optimising a system in parallel and the future needs of the composite recycling business, a flexible flow shop for carbon fibre reinforced composite recycling is modelled. Optimisation approaches based on non-dominated sorting genetic algorithm II (NSGA-II) have been developed to reduce the time and energy consumed for processing composite wastes by searching for the optimal sub-lot splitting and resource scheduling plans. Case studies on different composite recycling scenarios have been conducted to prove the feasibility of the model and the developed algorithm

    Modeling perennial groundcover effects on annual maize grain crop growth with the Agricultural Production Systems sIMulator

    Get PDF
    The inclusion of perennial groundcover (PGC) in maize production offers a tenable solution to natural resources-related concerns associated with conventional maize; however, insight into system management and key information gaps is needed to guide future research. We therefore extended the Agricultural Production Systems sIMulator (APSIM) to an annual and perennial intercrop by integrating annual and perennial APSIM modules. These were parameterized for Kentucky bluegrass (KB) (Poa pratensis L.) or creeping red fescue (CF) (Festuca rubra L.) as PGC using a three-year dataset. Our objectives for this intercropping modeling study were to: i) simultaneously model a PGC and annual cash crop using APSIM software; ii) utilize APSIM to understand interactive processes in the maize-PGC system; and iii) utilize the calibrated model to explore both production and environmental benefits via scenario modeling. For objective I, the integrated model successfully predicted maize total aboveground biomass (TAB) (relative root mean square error, RRMSE of 13- 27%) and PGC above- and belowground tissue N concentration (RRMSE of 11-18%). The calibrated model effectively captured observed trends in PGC biomass accumulation and soil nitrate (NO3). For objective II, model analysis showed that competition for light was the primary maize yield penalty factor from PGC, while water and N impacted maize yield later in the maize growing season. In objective III, we concluded that effective PGC suppression produces minimal maize yield loss and significant environmental benefits; conversely, poor groundcover suppression may produce unfavorable environmental consequences and decrease maize grain yield. Effective PGC suppression is key for long-term system success

    A proteomic approach to investigating gene cluster expression and secondary metabolite functionality in Aspergillus fumigatus.

    Get PDF
    A combined proteomics and metabolomics approach was utilised to advance the identification and characterisation of secondary metabolites in Aspergillus fumigatus. Here, implementation of a shotgun proteomic strategy led to the identification of non-redundant mycelial proteins (n = 414) from A. fumigatus including proteins typically under-represented in 2-D proteome maps: proteins with multiple transmembrane regions, hydrophobic proteins and proteins with extremes of molecular mass and pI. Indirect identification of secondary metabolite cluster expression was also achieved, with proteins (n = 18) from LaeA-regulated clusters detected, including GliT encoded within the gliotoxin biosynthetic cluster. Biochemical analysis then revealed that gliotoxin significantly attenuates H2O2-induced oxidative stress in A. fumigatus (p>0.0001), confirming observations from proteomics data. A complementary 2-D/LC-MS/MS approach further elucidated significantly increased abundance (p<0.05) of proliferating cell nuclear antigen (PCNA), NADH-quinone oxidoreductase and the gliotoxin oxidoreductase GliT, along with significantly attenuated abundance (p<0.05) of a heat shock protein, an oxidative stress protein and an autolysis-associated chitinase, when gliotoxin and H2O2 were present, compared to H2O2 alone. Moreover, gliotoxin exposure significantly reduced the abundance of selected proteins (p<0.05) involved in de novo purine biosynthesis. Significantly elevated abundance (p<0.05) of a key enzyme, xanthine-guanine phosphoribosyl transferase Xpt1, utilised in purine salvage, was observed in the presence of H2O2 and gliotoxin. This work provides new insights into the A. fumigatus proteome and experimental strategies, plus mechanistic data pertaining to gliotoxin functionality in the organism

    Body composition at birth and its relationship with neonatal anthropometric ratios: the newborn body composition study of the INTERGROWTH-21(st) project.

    Get PDF
    Background We aimed to describe newborn body composition and identify which anthropometric ratio (weight/length; BMI; or ponderal index, PI) best predicts fat mass (FM) and fat-free mass (FFM). Methods Air-displacement plethysmography (PEA POD) was used to estimate FM, FFM, and body fat percentage (BF%). Associations between FFM, FM, and BF% and weight/length, BMI, and PI were evaluated in 1,019 newborns using multivariate regression analysis. Charts for FM, FFM, and BF% were generated using a prescriptive subsample (n=247). Standards for the best-predicting anthropometric ratio were calculated utilizing the same population used for the INTERGROWTH-21(st) Newborn Size Standards (n=20,479). Results FFM and FM increased consistently during late pregnancy. Differential FM, BF%, and FFM patterns were observed for those born preterm (34(+0)-36(+6) weeks' gestation) and with impaired intrauterine growth. Weight/length by gestational age (GA) was a better predictor of FFM and FM (adjusted R(2)=0.92 and 0.71, respectively) than BMI or PI, independent of sex, GA, and timing of measurement. Results were almost identical when only preterm newborns were studied. We present sex-specific centiles for weight/length ratio for GA. Conclusions Weight/length best predicts newborn FFM and FM. There are differential FM, FFM, and BF% patterns by sex, GA, and size at birth

    Ergothioneine Biosynthesis and Functionality in the Opportunistic Fungal Pathogen, Aspergillus fumigatus.

    Get PDF
    Ergothioneine (EGT; 2-mercaptohistidine trimethylbetaine) is a trimethylated and sulphurised histidine derivative which exhibits antioxidant properties. Here we report that deletion of Aspergillus fumigatus egtA (AFUA_2G15650), which encodes a trimodular enzyme, abrogated EGT biosynthesis in this opportunistic pathogen. EGT biosynthetic deficiency in A. fumigatus significantly reduced resistance to elevated H2O2 and menadione, respectively, impaired gliotoxin production and resulted in attenuated conidiation. Quantitative proteomic analysis revealed substantial proteomic remodelling in ΔegtA compared to wild-type under both basal and ROS conditions, whereby the abundance of 290 proteins was altered. Specifically, the reciprocal differential abundance of cystathionine γ-synthase and β-lyase, respectively, influenced cystathionine availability to effect EGT biosynthesis. A combined deficiency in EGT biosynthesis and the oxidative stress response regulator Yap1, which led to extreme oxidative stress susceptibility, decreased resistance to heavy metals and production of the extracellular siderophore triacetylfusarinine C and increased accumulation of the intracellular siderophore ferricrocin. EGT dissipated H2O2 in vitro, and elevated intracellular GSH levels accompanied abrogation of EGT biosynthesis. EGT deficiency only decreased resistance to high H2O2 levels which suggests functionality as an auxiliary antioxidant, required for growth at elevated oxidative stress conditions. Combined, these data reveal new interactions between cellular redox homeostasis, secondary metabolism and metal ion homeostasis
    corecore