11,485 research outputs found

    Identifying and Indexing Icosahedral Quasicrystals from Powder Diffraction Patterns

    Full text link
    We present a scheme to identify quasicrystals based on powder diffraction data and to provide a standardized indexing. We apply our scheme to a large catalog of powder diffraction patterns, including natural minerals, to look for new quasicrystals. Based on our tests, we have found promising candidates worthy of further exploration.Comment: 4 pages, 1 figur

    Magneto-optical evidence of the percolation nature of the metal-insulator transition in the 2D electron system

    Get PDF
    We compare the results of the transport and time-resolved magneto-luminescence measurements in disordered 2D electron systems in GaAs-AlGaAs heterostructures in the extreme quantum limit, in particular, in the vicinity of the metal-insulator transition (MIT). At filling factors ν<1\nu <1, the optical signal has two components: the single-rate exponentially decaying part attributed to a uniform liquid and a power-law long-living tail specific to a microscopically inhomogeneous state of electrons. We interprete this result as a separation of the 2D electron system into a liquid and localized phases, especially because the MIT occurs strikingly close to those filling factors where the liquid occupies 12{1\over 2} of the sample area (the percollation threshold condition in two-component media).Comment: 5 pages RevTex + 4 fig., to appear in PRB, Rapid Com

    Improved setup for producing slow beams of cold molecules using a rotating nozzle

    Full text link
    Intense beams of cold and slow molecules are produced by supersonic expansion out of a rapidly rotating nozzle, as first demonstrated by Gupta and Herschbach. An improved setup is presented that allows to accelerate or decelerate cold atomic and molecular beams by up to 500 m/s. Technical improvements are discussed and beam parameters are characterized by detailed analysis of time of flight density distributions. The possibility of combining this beam source with electrostatic fields for guiding polar molecules is demonstrated

    Second harmonic generation in SiC polytypes

    Full text link
    LMTO calculations are presented for the frequency dependent second harmonic generation (SHG) in the polytypes 2H, 4H, 6H, 15R and 3C of SiC. All independent tensor components are calculated. The spectral features and the ratios of the 333 to 311 tensorial components are studied as a function of the degree of hexagonality. The relationship to the linear optical response and the underlying band structure are investigated. SHG is suggested to be a sensitive tool for investigating the near band edge interband excitations.Comment: 12 pages, 10 figure

    Multiconfigurational Hartree-Fock theory for identical bosons in a double well

    Full text link
    Multiconfigurational Hartree-Fock theory is presented and implemented in an investigation of the fragmentation of a Bose-Einstein condensate made of identical bosonic atoms in a double well potential at zero temperature. The approach builds in the effects of the condensate mean field and of atomic correlations by describing generalized many-body states that are composed of multiple configurations which incorporate atomic interactions. Nonlinear and linear optimization is utilized in conjunction with the variational and Hylleraas-Undheim theorems to find the optimal ground and excited states of the interacting system. The resulting energy spectrum and associated eigenstates are presented as a function of double well barrier height. Delocalized and localized single configurational states are found in the extreme limits of the simple and fragmented condensate ground states, while multiconfigurational states and macroscopic quantum superposition states are revealed throughout the full extent of barrier heights. Comparison is made to existing theories that either neglect mean field or correlation effects and it is found that contributions from both interactions are essential in order to obtain a robust microscopic understanding of the condensate's atomic structure throughout the fragmentation process.Comment: 21 pages, 13 figure

    The Effective Particle-Hole Interaction and the Optical Response of Simple Metal Clusters

    Full text link
    Following Sham and Rice [L. J. Sham, T. M. Rice, Phys. Rev. 144 (1966) 708] the correlated motion of particle-hole pairs is studied, starting from the general two-particle Greens function. In this way we derive a matrix equation for eigenvalues and wave functions, respectively, of the general type of collective excitation of a N-particle system. The interplay between excitons and plasmons is fully described by this new set of equations. As a by-product we obtain - at least a-posteriori - a justification for the use of the TDLDA for simple-metal clusters.Comment: RevTeX, 15 pages, 5 figures in uufiles format, 1 figure avaible from [email protected]

    Investigation of growth responses in saprophytic fungi to charred biomass

    Get PDF
    We present the results of a study testing the response of two saprophytic white-rot fungi species, Pleurotus pulmonarius and Coriolus versicolor, to charred biomass (charcoal) as a growth substrate. We used a combination of optical microscopy, scanning electron microscopy, elemental abundance measurements, and isotope ratio mass spectrometry (&lt;sup&gt;13&lt;/sup&gt;C and &lt;sup&gt;15&lt;/sup&gt;N) to investigate fungal colonisation of control and incubated samples of Scots Pine (Pinus sylvestris) wood, and charcoal from the same species produced at 300 °C and 400 °C. Both species of fungi colonise the surface and interior of wood and charcoals over time periods of less than 70 days; however, distinctly different growth forms are evident between the exterior and interior of the charcoal substrate, with hyphal penetration concentrated along lines of structural weakness. Although the fungi were able to degrade and metabolise the pine wood, charcoal does not form a readily available source of fungal nutrients at least for these species under the conditions used in this study

    The 1999 Hercules X-1 Anomalous Low State

    Full text link
    A failed main-on in the 35d cycle of Her X-1 was observed with the Rossi X-Ray Timing Explorer (RXTE) on 1999 April 26. Exceptions to the normal 35d cycle have been seen only twice before; in 1983 and again 1993. We present timing and spectral results of this latest Anomalous Low State (ALS) along with comparisons to the main-on and normal low states. Pulsations were observed in the 3-18 keV band with a fractional RMS variation of (0.037+-0.003). Spectral analysis indicates that the ALS spectrum has the same shape as the main-on but is modified by heavy absorption and scattering. We find that 70% of the observed emission has passed through a cold absorber (N_H=5.0x10^{23}cm^{-2}). This partially absorbing spectral fit can be applied to the normal low state with similar results. We find that the ALS observations may be interpreted as a decrease in inclination of the accretion disk causing the central X-Ray source to be obscured over the entire 35d cycle.Comment: revised text, 6 revised figures, accepted for publication in Ap

    Time-dependent quantum many-body theory of identical bosons in a double well: Early time ballistic interferences of fragmented and number entangled states

    Full text link
    A time-dependent multiconfigurational self-consistent field theory is presented to describe the many-body dynamics of a gas of identical bosonic atoms confined to an external trapping potential at zero temperature from first principles. A set of generalized evolution equations are developed, through the time-dependent variational principle, which account for the complete and self-consistent coupling between the expansion coefficients of each configuration and the underlying one-body wave functions within a restricted two state Fock space basis that includes the full effects of the condensate's mean field as well as atomic correlation. The resulting dynamical equations are a classical Hamiltonian system and, by construction, form a well-defined initial value problem. They are implemented in an efficient numerical algorithm. An example is presented, highlighting the generality of the theory, in which the ballistic expansion of a fragmented condensate ground state is compared to that of a macroscopic quantum superposition state, taken here to be a highly entangled number state, upon releasing the external trapping potential. Strikingly different many-body matter-wave dynamics emerge in each case, accentuating the role of both atomic correlation and mean-field effects in the two condensate states.Comment: 16 pages, 5 figure
    • …
    corecore