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Abstract  

 

We present results of a study testing the response of two saprophytic white-rot fungi 

species, Pleurotus pulmonarius and Coriolus versicolor, to charred biomass 

(charcoal) as a growth substrate. We used a combination of optical microscopy, 

Scanning Electron Microscopy (SEM), elemental abundance measurements, and 

Isotopic Ratio Mass Spectrometry (IRMS) to investigate fungal colonization of 

control and incubated samples of Scots Pine (Pinus sylvestris) wood, and charcoal 

from the same species produced at 300°C and 400°C. Both species of fungi colonize 

the surface and interior of wood and charcoals over time periods of less than 70 days, 

however distinctly different growth forms are evident between the exterior and 

interior of the charcoal substrate, with hyphal penetration concentrated along lines of 

structural weakness. Although the fungi were able to degrade and metabolize the pine 

wood, charcoal does not form a readily available source of fungal nutrients at least for 

these species under the conditions used in this study.  
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Introduction 

 

Fire plays a central role in the dynamics of many ecosystems, with over 8.6 x 1012 kg of 

biomass burnt globally each year [1]. Consequently, fire strongly influences vegetation 

development and soil microbial function, driving patterns of succession and species 

composition [2]. A major product of biomass burning is charcoal, formed as a result of 

biomass pyrolysis when material is exposed to elevated temperatures (over c.300°C), 

where flaming combustion is inhibited by low oxygen availability. The importance of 

charcoal to global biogeochemical cycles is highlighted by the fact that at present, total 

global production of pyrogenically altered carbon (including charcoal) from biomass 

burning has been estimated at 50-270 Gt yr-1 [3]. Therefore, the products of biomass 

pyrolysis, including charcoal, make up an important proportion of many soils, 

comprising up to 35% of total organic content [4].    

 

The molecular changes during production of charcoal, particularly reorganization of the 

carbon structure into condensed aromatic ring configurations [5] both raise the carbon 

content and the resistance to environmental degradation of charcoal relative to un-

pyrolysed biomass. As a result, the mineralization rates of some forms of charcoal are 

extremely slow, apparently resisting degradation over geological timescales [1]. On the 

other hand, it is also apparent that some charcoal components undergo environmental 

degradation on decadal timescales (e.g. [6]). The potential environmental resistance to 

mineralization has resulted in a recent interest in the potential for net sequestration of C 

over extended time periods, via the large scale amendment of soils with charcoal, also 

termed ‘biochar’ [7]. A central question for both specific initiatives such as biochar, 

and for understanding of wider general ecosystem dynamics, is the interaction between 

charcoal and soil microbial communities.  

 

Fungi are an important part of dynamic soil systems, with the majority of the over 

80,000 presently known species spending at least part of their life-cycle in the soil [8], 

and fungal hyphae contents estimated in some environments as high as 67 km per 1g of 

dry soil [9]. Fungi therefore play an essential role in soil ecosystems. For example, the 

ramification of hyphae through soil has the beneficial effect of stabilizing soil structure, 

both through the adhesive properties of exo-polysacharides and the physical entrapment 

of soil particles [10]. These actions have significant influence on soil water infiltration 
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and water holding capacity. The fungi of interest in this study are the large group of 

fungi that function as primary degraders of organic material to forms more bioavailable 

for plants and other soil biota (saprophytic fungi).  

 

There is a growing body of evidence that some fungal communities respond positively 

to the presence of charcoal in soils, for example, increased activity of arbuscular 

mycorrhizal fungi due to changes in soil chemistry has been demonstrated following 

charcoal additions [11]. However, direct empirical evidence for the mechanisms by 

which charcoal presence may enhance fungal growth is often lacking [12, 13]. Different 

hypotheses include the availability of C and nutrients from the charcoal surface [14], or 

the provision of micro-habitats for fungal communities within the char structure itself 

[15]. In the case of saprophytic fungi, many species are able to utilize aromatic 

macromolecules, such as lignin, as an energy source, by catabolic degradation with a 

variety of exoenzymes [16]. In addition to compounds in uncharred biomass, 

saprophytic species have also been observed to co-metabolise recalcitrant materials 

such as black shales and charcoal over relatively short timescales of <4 months [17]. 

However, questions remain surrounding the role of pyrolysed biomass as a growth 

substrate, and specifically whether fungi are able to utilize carbon from charred 

material as an energy source.  

 

In this study, we investigate the response of two saprophytic fungal species to charcoal, 

produced under different pyrolysis conditions. These results feed directly into enhanced 

understanding and quantification of the role charcoal plays in global biogeochemical 

cycles via soil microorganism- charcoal interactions. In order to address these research 

goals, we have used a combination of stable isotopic analysis via Isotope Ratio Mass 

Spectrometry (IRMS), fungal growth analysis, and observation by Scanning Electron 

Microscopy. The combination of IRMS with visual techniques represents a new 

approach to studies of this type, and appears a promising methodological approach to 

deriving direct empirical evidence for fungi- charcoal interaction mechanisms.      

 

1. Materials and methods 

 

The approach used in this study involved quantitative examination of (i.) the effect on 

fungal growth of charcoal additions to a minimal nutrient medium, and (ii.) the 
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utilization of charcoal particles as a growth substrate by soil fungi. The charcoal was 

prepared from samples of Scots Pine (Pinus sylvestris), obtained from Tentsmuir 

Forest, Fife, in 2005. The bark was removed, and a sub-section of the first 15 rings was 

taken, and processed to 1.5cm cubes. Charcoal was prepared from the cubes using a 

Carbolite™ rotary furnace in an inert (N2) atmosphere for a period of 60 minutes at 

either 300°C or 400°C, as described in [18]. Molecular structural differences between 

charcoals produced at these temperatures results from differential thermal degradation 

of wood structural components. Cellulosic material degrades very rapidly over 250-

400°C, while lignin whereas slower degradation of lignin proceeds over the interval 

200°C to 720°C [19, 20]. 

 

Two species of white-rot, lignin-degrading fungi were used in the study; Pleurotus 

pulmonarius and Coriolus versicolor which have a demonstrated ability to break 

down complex macromolecular lignin structures that contain a relatively large number 

of aromatic rings. Furthermore, the ability of these fungi to co-metabolise a range of 

macromolecules from polycyclic aromatic hydrocarbons (PAHs) and 

pentachlorophenols (PCPs) to tars and oils has also been reported [21, 22, 23, 24]. 

Therefore, it is hypothesised that the exocelluar enzymes produced by these fungi 

may also be capable of the biodegradation charcoal. 

 

To determine fungal growth rate response, a study of the two fungal species was 

conducted on minimal essential media (MEM) [25] with differing carbon sources. The 

carbon sources were 0 and 0.5 % D-glucose, 0.5% 300°C powdered charcoal and 

0.5% 400°C powdered charcoal. The base media components were selected in an 

attempt reflect the low levels of available nutrient for growth found in the charcoals. 

Fungi were incubated at 20 °C on the respective carbon sources for a period of 8 days, 

during which hyphal extension and morphology of filaments were assessed daily.  

 

In the second experiment, charcoal blocks and uncharred blocks of pine wood were 

incubated with both fungal species for 70 days. At least 12 replicates were used for 

fungal incubations on charcoals, and 5 replicates for incubations on wood. The blocks 

were placed upon MEM agar, which contained a starting carbon (0.5 % D-glucose) 

and nitrogen (0.02% L-aspargenine) source to initiate fungal colonization. Prior to, 
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and following, the incubation period, the cubes were lyophilized and weighed to 

estimate the rate of decay of the blocks. In the case of P. pulmonarius this was 

accompanied by visual qualitative analysis of the degree of surface colonization 

following 56 days incubation. The extent and nature of fungal colonization of the 

blocks was investigated using scanning electron microscopy (SEM). Lyophilized 

blocks were split open, and the freshly split surfaces sputter-coated with Au. The 

outer and inner surfaces of the blocks were then examined at the St. Andrews 

University Facility for Earth and Environmental Analysis (FEEA), using a JEOL 

JSM-5410 scanning electron microscope at 10 kV accelerating voltage, with a 

variable working distance of between 15 and 28 mm.  

 

Isotopic and elemental analyses were performed on samples of untreated wood and 

charcoal and of the material following fungal incubation. To obtain samples for 

analysis, dried blocks of both control and incubated material were split open across 

the centre and material for analysis was extracted to a depth of 2mm at a minimum of 

four points across the interior cross-section of each block, extending to 2mm from the 

outer edges of the block surface. Additionally, samples were obtained from the 

surface 0.5 mm of blocks that had been subject to P. pulmonarius fungal incubation 

(see Figure 2C). This ensured extraction of material with a homogeneous isotopic 

signal prior to incubation, excluding the effect of inter-ring isotopic variation within 

the original plant sample. Isotopic and elemental analyses were also made of both the 

D-glucose and L-Asparagine carbon and nitrogen sources and the two species of fungi 

separately grown on MEM without the addition of any charcoal. This allowed an 

assessment of the degree of fractionation between these substrates and the fungi, and 

of the isotopic signature of the fungi when these nutrient sources were accessed.   

 

Stable isotopic ratios of carbon (13C/12C) and nitrogen (15N/14N) were measured using 

continuous flow via a Costech elemental analyser (EA) fitted with a zero-blank 

autosampler, interfaced by a ConFlo II to a ThermoFinnegan Deltaplus XL at the 

University of St. Andrews FEEA. The carbon (%C) and nitrogen (%N) content of the 

samples was determined following combustion in the EA. Each sample was measured 

in duplicate, and individual machine runs included a mix of sample material, blanks 

and laboratory standards. Three internal standards were measured, where the primary 

standard was acetanilide (IAEA/Sigma Aldrich, %C: 71.09%, δ13C: -30.11‰; %N: 
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10.36, δ15N: -0.03), and secondary standards were a commercially available protein 

(B2155, %C: 47.02, δ13C: -26.98‰, %N: 13.63, δ15N: 5.94) and a C4 cane sugar/uric 

acid mix (Tesco, %C: 40.20, δ13C: -12.02‰, %N: 9.1, δ15N:15.07). Results are 

expressed in standard notation (δ13C and δ15N) as parts per thousand (‰) relative to 

Vienna PeeDee Belemnite (VPDB) for δ13C and atmospheric N2 for δ15N. 

Measurement precisions were better than 0.1‰ for δ13C, 0.3‰ for δ15N, 1% for %C 

and 0.05% for %N.  

 

As it was not possible to both analyse a single block for elemental/isotopic 

composition, and also incubate the same block with the fungal species, it is likely that 

slight differences existed in the composition of the control and incubated blocks prior 

to fungal incubation. SEM analysis indicates that most colonization on the exterior of 

the blocks with the number of hyphae decreasing progressively into the interior of the 

blocks. Therefore, individual measurements in a single block are normalized to the 

composition obtained from the centre of each block to make the results comparable 

between blocks. This allows an assessment of the extent of variability within 

incubated and control blocks, and whether isotopic variations were randomly 

distributed throughout the blocks, or followed a spatial pattern.  
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2. Results 

 

Figure 1 shows a comparison of the mean hyphal extension rates for each fungal 

species on each growth medium. Hyphal extension rates for both species were 

significantly higher for media with 0 and 0.5 % glucose than was the case for any 

media that included charcoal. In media without charcoal, C. versicolor appeared to 

show faster growth rates than P. pulmonarius and hyphal extension was greatest with 

0% glucose for both fungi. However it is important to note that the growth forms on 0 

and 0.5% glucose were very different. On 0% glucose, growth was very sparse, with 

few branched hyphae, typical of an exploratory growth form [26]. In contrast, much 

denser growth, typical of a more exploitative growth form, occurred on 0.5 % 

glucose.  

 

Growth of fungal hyphae on the charcoal-containing media was generally very sparse, 

with a lag period of 3 days, and it was difficult to visualise the hyphae against the 

black coloured agar. The slow hyphal extension rate meant it was difficult to measure 

hyphal branching angles, however small fan-like flushes of hyphal growth were 

observed, suggestive of an exploratory growth form. There were differences between 

the two fungal species in growth response to the two different charcoal-containing 

media. In the case of P. pulmonarius there was a clearly faster growth rates on the 

media containing 300°C powdered charcoal compared to the 400°C powdered 

charcoal (Figure 1). In contrast, C. versicolor showed no significant difference in 

hyphal extension rate between the two charcoal treatments. 

 

The weight gain recorded for some charcoal blocks following fungal incubation 

(Table 1) demonstrates colonization of the surface of the charcoal by a significant 

mass of fungi. However there is no evidence for removal of any significant proportion 

of the charcoal structure itself via fungal degradation. Weight losses in the wood 

blocks on the other hand, indicate that >9.50% by weight of the lignocellulosic 

structure has been metabolized over the fungal incubation period. Differences in 

colonization were also evident in visual analysis. After 8 weeks incubation, fungal 

growth of P. pulmonarius was visible on the outer surfaces of both the 300°C and 
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400°C charcoals, however, a greater degree of colonization had occurred on the 

300°C charcoal blocks (Figure 2A and 2B).  

 

Both species of fungi appear to be able to colonize the outer surface of both the wood 

and charcoal blocks (Figure 3, A-D). A relatively dense mass of branched, 

anastomosed fungal hyphae was observed on the outer surface of all samples, with 

some morphological features suggestive of an exploitative growth form. In the pine 

wood, there is evidence for substantial fungal degradation of interior structures within 

the blocks (Figure 4 A-B), with numerous cracks, small cavities, and holes in the cell 

walls that are not present in the non-fungal controls. In the charcoal blocks, similar 

evidence for structural degradation is absent, and penetration of hyphae in significant 

quantities into the interior of the blocks appears to occur mainly along pre-existing 

physical cracks and fissures that extend from the surface to varying depths. Fungal 

colonization of these involves a sparse, exploratory growth form (Figure 4 C-D). SEM 

comparison of the fungal colonization of the interior of the charcoal blocks again 

shows differences in colonization degree between 300°C and 400°C charcoal for C. 

versicolor, but a similar degree of colonization for the two charcoals by P. 

pulmonarius.  

 

Internal %C variability through the control blocks is low, with a range of <0.45% in 

the wood and 300°C charcoal, and <0.85% in the 400°C charcoal (Table 2). Isotopic 

variation across the control blocks is also relatively small, with a variation of 0.2‰ in 

the 300°C charcoal, and 0.3‰ in the wood and 400°C charcoal. The nitrogen content 

of all three sample types is low; in wood and 400°C charcoal, this was lower than the 

measurement precision, however in the 300°C charcoal %N content averaged 0.3% 

(giving an average C:N ratio of 197), with a range of 0.04%. The δ 15N values of these 

samples had a range of 0.66‰ with an average value of -4.27‰ (Table 2). The 

internal isotopic and elemental variability in the control blocks is slightly greater than 

the instrument precision, and therefore the maximum range in values across control 

blocks is taken as the significance level for further interpretation. These values are 

±0.85% for %C, ±0.31‰ for δ13C, 0.04% for %N and 0.66‰ for δ 15N.  

 

The δ13C of the D-glucose is -11.25‰, and of the L-Asparagine is -24.23‰, while the 

δ13C of C. versicolor and P. pulmonarius grown on MEM is -8.61‰ and -10.44‰ 
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respectively, showing no significant incorporation of L-Asparagine carbon by the 

fungi (Table 2). The elemental composition of the two fungi species for C was 

37.05% in C. versicolor and 41.54% in P. pulmonarius, and for N was 9.02 % in C. 

versicolor and 3.22% in P. pulmonarius. The D-glucose is obtained from C4 sugars, 

that do not contain nitrogen, so the L-Asparagine (δ15N = +4.23‰) comprises the 

entirety of the fungal ON source, as reflected in the δ15N of fungi grown on MEM; 

+2.93‰ for C. versicolor and +3.08‰ for P. pulmonarius. This gives fungi δ15N 

~1‰ lower than that of the L-Asparagine, indicating that both species discriminate 

against uptake of 15N when grown on this substrate, as previously observed [27].  

  

Variation in %C increased following incubation with P. pulmonarius and C. 

versicolor in the wood and 300°C charcoal, for example variations of up to 2.57% 

were observed in the 300°C charcoal incubated with C. versicolor. However, in the 

400°C charcoal %C variation was only slightly larger than the control samples (Table 

2). Fungal incubation raised the %N of all samples to measurable levels, with the 

highest %N concentrations in the majority of samples were recorded on the outside of 

the blocks, where fungal hyphae concentration was greatest. Overall though, %N 

values across the tested samples remained relatively low.  

 

After incubation with both P. pulmonarius and C. versicolor the range in δ13C from 

the exterior to interior of the blocks showed an overall increase relative to the control 

samples, up to a maximum of 1.40‰ (Figure 5). Variability of δ13C in charcoal 

samples incubated with P. pulmonarius increased relative to the control in both the 

300°C and 400°C charcoal, whereas following incubation with C. versicolor, 

increased δ13C variability was only observed in the 300°C charcoal. Increases in δ13C 

variability appear to relate to a pattern of isotopic offset between samples from the 

exterior and interior of the blocks, however these are inconsistent in direction between 

sample types. For δ15N, there was considerable variation in values across the 

incubated blocks, with differences of up to 3.6‰ in δ15N (Figure 6). Again, these 

variations appear to follow a pattern, with separation in values between the exterior 

and interior of the blocks, where values on the exterior tend to be higher. Average 

values of δ15N in all samples decrease in the order wood > 300°C charcoal > 400°C 

charcoal (Table 2); for example, following incubation with P. pulmonarius the 

average sample δ15N values are -3.04‰, -4.7‰ and -6.6‰, respectively. In all 
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samples following incubation, the highest δ15N values occur on the outer surface of 

the blocks.  

 

3. Discussion 

 

Fungal colonization occurred after 70 days on the surface of all samples, with a 

particular concentration of fungal hyphae on the outer surface of the blocks, and it is 

only in this zone that an exploititative growth form is observed, indicating either a 

concentration of available nutrients on these surfaces, or that the substrate surface 

forms a favourable habitat for the fungi to exploit the D-glucose and L-asparagine C 

and N sources. Penetration of the fungi to the interior of the charcoal blocks appeared 

limited to physical cracks in the structure. The preferential exploitation of structures 

such as cracks in the charcoal blocks indicates heterogeneity in the presence of fungal 

hyphae within the blocks, rather than a progressive radiation of fungi from the 

exterior to the interior of the blocks. This suggests that colonization of charred 

organic material by saprophytic fungi may therefore occur more rapidly when the 

material contains greater amounts of cracks that the fungi can easily penetrate. The 

resulting spatial heterogeneity in fungal hyphae within the blocks observed by SEM 

imaging appears to correspond to the heterogeneity observed in the elemental and 

isotopic values within incubated samples. Overall, both image based, elemental and 

isotopic analyses suggest that colonization of the samples by the fungi exterior and 

interior colonization is distinctly different. During the three month period of this 

study, the majority of fungal growth occurred within the top few mm of the charcoal 

block surfaces.  

 

Increased variability in measured isotopic and elemental values between the control 

and incubated samples suggests that for both species, fungal growth on different 

samples produced sufficient mycelium mass to be detectable by these techniques. In 

the majority of incubated samples, decreased %C at the block exterior is consistent 

with a greater contribution of fungal mass to samples taken from these locations. 

Increases in %N following incubation are also suggestive of the presence of fungal 

hyphae through the samples, however there is no consistent trend in values with 

location in the blocks. This may be due to the fact that the C: N ratios of the 

unincubated substrates are so high. The introduction of even a small proportion of 
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fungal mass, with a far lower C: N ratio would therefore produce a measurable 

increase in %N. However, as the %N values of the samples remain uniformly low, it 

is evident that hyphae comprise a relatively small proportion of the overall sample 

mass. This is consistent with observations by SEM of only limited penetration by the 

fungi to the block interiors.  

 

Increased δ13C variation across the blocks following incubation appears due to 

significant differences between the outer block, where fungal colonization is greatest, 

and the interior (Figure 5). In wood and 400°C charcoal following P. pulmonarius 

incubation, δ13C values are higher on the block exterior, relative to the interior, 

consistent with a contribution from the isotopically heavier fungi. However, in 300°C 

charcoal incubated with either species, block exterior values tend to be lower than in 

the interior. In the case of δ15N, higher values on the block exteriors (Figure 6) are 

consistent with a contribution from fungi δ15N, which is significantly enriched in 15N 

relative to the charcoal substrate. The greater observed variability in δ15N relative to 

δ13C in the incubated blocks (figures 5 and 6) may again result from the high C:N 

ratios of the unincubated control samples. C:N values for the fungi are 4.1 for C. 

versicolor and 12.9 for P. pulmonarius, compared to values of 181 to 215 in the 

control 300°C charcoal.  As the %C of the control substrate is so high, a higher 

proportion of fungal mass would be required to significantly influence the δ13C of the 

samples than would be required to influence δ15N.  

 

Comparison of δ13C and δ15N values indicates apparent differences between the effect 

of fungal incubation on wood, 300°C and 400°C charcoal samples, as highlighted in 

figure 7, where several different sample groups are evident. This includes the control 

300°C charcoal, and comparison of the scatter in values between this and the 

incubated sample groups again emphasises the higher isotopic variability of incubated 

versus control samples. In wood and 400°C charcoal following P. pulmonarius 

incubation, increases in δ13C generally correspond to higher δ15N values. In contrast, 

for 300°C charcoal incubated with both fungal species the trend appears to be in the 

opposite direction. The negative correlation between δ13C and δ15N in 300°C 

incubated charcoal samples, in contrast to the positive association in 400°C charcoal 

(Figure 7) may suggest variation in the isotopic composition of the fungi within 

samples, possibly as a function of resource partitioning within the hyphae. 
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Translocation of resources, including nutrients and water, within a continuous hyphal 

network enables fungi to colonize spatially heterogeneous substrates [28, 29]. This 

strategy may therefore be useful in colonization of substrates that are poor in certain 

resources, such as charcoal with a high carbon to nitrogen ratio.  

 

The quality of a fungal substrate is determined by the concentration and physical 

availability of nutrients, as well their chemical form [29]. The results presented here 

suggest that among the tested materials, charcoal produced at 300-400°C is a low-

quality growth substrate for both P. pulmonarius and C. versicolor fungal species.  

The results of the growth rate study, specifically differences in hyphal growth forms, 

demonstrate that that with 0% glucose the fungi are actively searching for energy 

sources by devoting resources to rapid development of few long hyphae, whereas with 

0.5% glucose the fungi are devoting resources to development of a more branched 

hyphal network in order maximise resource capture from the nutrient agar plates. In 

addition, the observed growth forms within the charcoal blocks suggest that an 

exploratory form developed, and the hyphal penetration within the block is more 

actively engaged in seeking readily available nutrient sources, rather than in any 

utilization of the charcoal structure itself. This is supported by the absence of 

significant weight loss following fungal incubation, with overall increases in mass 

observed in some charcoal blocks. In contrast, some degradation of the wood structure 

appears to have occurred, with significant mass loss in the measured samples, and a 

clear difference in physical structural degradation revealed by SEM imaging of the 

incubated samples. The destruction of anatomical structures in the wood sample by 

fungal action contrasts with the apparent lack of evidence of structural degradation of 

the charcoal samples.  

 

Pyrolysis results in alterations to the wood macro- and micro-structure, with 

progressive homogenization of the wood cell walls and disappearance of the middle 

lamella [30]. This occurs in conjunction with increases in overall average carbon 

abundances with increasing pyrolysis temperature, in this study from 46.0% in wood 

to 78.8% for 400°C charcoal. The result is decreasing structural heterogeneity as 

pyrolysis temperature increases, and it appears that this feature plays a major role in 

inhibiting growth of some fungal species when charcoal is used as a substrate. These 

results support the interpretation that changes in molecular structure induced by 
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pyrolysis of wood at temperatures of 300°C or more greatly inhibit the ability of these 

species of saprophytic fungi to enzymatically degrade charcoal, at least over the 

timeframe of this study. This is likely to be the result of lower bioavailability of the 

carbon structure of the charcoal itself, however it is also possible that pyrolysis 

produces certain substances that actively inhibit the activity of the fungi. Both 

theories have previously been suggested to explain reduction of fungal attack in wood 

following heat treatment [31].  
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4. Conclusions  

 

It is clear from visual and SEM analysis that both species of fungi colonize the 

surface, and to a lesser extent, the interior, of both 300°C and 400°C charcoals over 

time periods of less than three months. Overall, it appears that a combined visual and 

elemental/isotopic approach is a promising methodology for examining fungal 

response to charcoal as a growth substrate. It is important to note that these results 

represent a relatively short term experiment, and future work should concentrate on 

determining whether over more extended time periods a more extensive degradation 

of charcoal by fungi occurs. However, the results presented here suggest that for these 

two common species of fungi, breakdown of the structure of charcoal itself does not 

supply a readily available source of nutrients. This is in contrast to previous work, 

which suggests that some saprophytic fungi species do degrade highly recalcitrant 

condensed aromatic structures (e.g. [17]), and highlights the fact that the diversity of 

microbial species and strategies in soils will likely result in a range of responses to 

charcoal. Rather than using the charcoal structure itself as a source of nutrients, it is 

also possible that colonization of the charcoal samples by the fungi could be the result 

of different nutrients (e.g. P, K, Ca) that are present on the charcoal surface as a result 

of pyrolytic degradation of the original biomass. Positive effects for soil saprophytic 

fungi communities consisting of species similar to the ones tested here are therefore 

more likely to result from pyrolysed material as a favourable habitat or source of 

nutrients, than direct utilization of the charcoal structure itself, even in material 

produced at relatively low temperatures (i.e. <300°C). 

 

Further research within this field is clearly required in order to enhance understanding 

of interactions between fungi and charcoal in soils, not least because of the truly 

global importance of these within such systems. Future directions include a focus 

upon variation in the range of conditions for fungal incubation, such as temperature-

dependent initiation of more rapid phases of fungal growth.  
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Tables  
 
Table 1: Weight changes within fungal decay study, showing changes in weight of 
samples of wood and two charcoals following fungal incubation with Pleurotus 
pulmonarius and Coriolus versicolor.  
 
Species P. pulmonarius C. versicolor 
Media Before 

Incubation 
(g) 

 After 
Incubation 

(g) 

% wt 
loss 

Before 
Incubation 

(g) 

 After 
Incubation 

(g) 

% wt 
loss 

      
2.622 2.220 15.332 2.392 2.264 5.351 
1.724 1.584 8.121 1.553 1.431 7.856 
1.756 1.608 8.428 1.688 1.572 6.872 
1.961 1.804 8.006 2.423 2.343 3.302 

Wood 

2.336 2.157 7.663 2.654 2.577 2.901 
       

1.219 1.218 0.082 1.235 1.235 0.000 
1.740 1.739 0.057 1.470 1.469 0.068 
1.904 1.909 -0.263 0.968 0.969 -0.103 
1.481 1.478 0.203 1.612 1.613 -0.062 
0.958 0.965 -0.731 1.227 1.229 -0.163 
1.496 1.503 -0.468 1.502 1.501 0.067 
1.190 1.194 -0.336 1.714 1.717 -0.175 
3.101 3.106 -0.161 1.339 1.344 -0.373 
0.865 0.870 -0.578 1.428 1.432 -0.280 
0.999 1.353 -35.435 1.361 1.363 -0.147 
1.590 1.597 -0.440 0.896 0.897 -0.112 

300°C 
charcoal 

3.678 3.696 -0.489 0.763 0.763 0.000 
       

0.326 0.333 -2.147 0.563 0.562 0.178 
0.522 0.527 -0.958 0.579 0.581 -0.345 
0.426 0.439 -3.052 0.483 0.484 -0.207 
0.381 0.383 -0.525 0.513 0.511 0.390 
0.476 0.481 -1.050 0.364 0.361 0.824 
0.391 0.399 -2.046 0.374 0.376 -0.535 
0.367 0.378 -2.997 0.601 0.602 -0.166 
0.430 0.439 -2.093 0.569 0.568 0.176 
0.340 0.350 -2.941 0.396 0.397 -0.253 
0.346 0.345 0.289 0.328 0.327 0.305 
0.484 0.500 -3.306 0.469 0.470 -0.213 

400°C 
charcoal 

0.488 0.493 -1.025 0.547 0.548 -0.183 
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 Table 2: Results of elemental and isotopic analysis of control samples and material 
following fungal incubation with Pleurotus pulmonarius and Coriolus versicolor. 
PW: pine wood, PC-300: 300°C charcoal, PC-400: 400°C charcoal. 1: Exterior block 
surface, 2: 1-2mm depth from top, 3: 7-8 mm depth from top, 4: 9-10 mm depth from 
top, 5: 7-8 mm depth from base, 6: 1-2mm depth from base. 
Sample %C δ13C %N δ15N CN 
D-glucose 39.40 -10.98 - - - 
      
L-aspargenine 35.89 -23.95 16.00 4.23 2.24 
      
C. versicolor 37.05 -8.61 9.02 2.93 4.11 
      
P. pulmonarius 41.54 -10.44 3.22 3.08 12.90 
      
PW_2 45.75 -25.07 - - - 
PW_3 46.09 -25.05 - - - 
PW_5 46.19 -24.76 - - - 
PW_6 46.06 -24.82 - - - 
      
PW_ P. pulmonarius _1 44.26 -23.93 0.31 -1.42 143.01 
PW_ P. pulmonarius _2 45.16 -24.71 0.10 -4.73 465.35 
PW_ P. pulmonarius _3 46.44 -25.19 0.04 -2.98 319.62 
PW_ P. pulmonarius _5 46.29 -25.28 - - - 
PW_ P. pulmonarius _6 46.83 -25.33 - - - 
      
PC-300_2 58.17 -25.37 0.28 -3.93 215.33 
PC-300_3 58.34 -25.57 0.31 -4.56 189.59 
PC-300_5 58.62 -25.52 0.29 -4.00 201.72 
PC-300_6 58.54 -25.39 0.32 -4.59 181.64 
      
PC-300- C. versicolor _2 56.75 -26.65 0.26 -0.36 217.19 
PC-300- C. versicolor _3 56.05 -26.15 0.24 -1.43 238.54 
PC-300- C. versicolor _4 58.25 -25.85 0.31 -3.81 187.10 
PC-300- C. versicolor _5 57.77 -25.98 0.34 -1.92 174.46 
PC-300- C. versicolor _6 56.51 -26.14 0.24 -3.28 241.77 
      
PC-300- P. pulmonarius _1 60.84 -26.41 0.27 -2.27 223.12 
PC-300- P. pulmonarius _2 60.49 -26.60 0.19 -4.98 324.66 
PC-300- P. pulmonarius _3 61.48 -26.01 0.21 -4.56 293.13 
PC-300- P. pulmonarius _5 61.42 -26.30 0.20 -5.88 311.94 
PC-300- P. pulmonarius _6 61.63 -26.55 0.19 -5.67 321.19 
      
PC-400_2 78.77 -27.70 - - - 
PC-400_3 79.19 -27.93 - - - 
PC-400_5 78.34 -27.63 - - - 
PC-400_6 78.74 -27.94 - - - 
      
PC-400- C. versicolor _2 70.51 -27.71 0.25 -4.74 289.89 
PC-400- C. versicolor_3 70.33 -27.91 0.19 -6.35 376.27 
PC-400- C. versicolor _5 70.50 -27.81 0.19 -6.49 368.28 
PC-400- C. versicolor _6 70.93 -27.97 0.19 -7.25 368.02 
      
PC-400- P. pulmonarius _1 72.36 -26.02 0.34 -4.61 214.37 
PC-400- P. pulmonarius _2 72.50 -26.91 0.24 -7.90 303.24 
PC-400- P. pulmonarius _3 73.49 -27.03 0.24 -7.59 306.32 
PC-400- P. pulmonarius _4 73.14 -26.86 0.24 -6.75 310.06 
PC-400- P. pulmonarius _5 73.36 -26.20 0.33 -6.68 223.17 
PC-400- P. pulmonarius _6 72.58 -25.79 0.28 -6.03 257.21 
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Figure captions 

 
Figure 1. Charts showing comparison of mycelial extension rates of Pleurotus 
pulmonarius(Pp) and Coriolus versicolor (Cv) on minimal essential media (MEM) 
with differing carbon sources.  
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Figure 2: A. Charcoal blocks produced using furnace at 300°C inoculated with P. 
pulmonarius after 8 weeks incubation; B. Charcoal blocks produced using furnace at 
400°C inoculated with P. pulmonarius after 8 weeks incubation; C. Schematic 
representation of sampling scheme for incubated and control blocks; homogenized 
sampled were obtained from the surface 0.5 mm (1), and at 1-2 mm and 7-8 mm depth 
from the top and bottom of each block (2, 3, 5, and 6, respectively). In two instances, 
a further sample was obtained at a depth of 9-10 mm within the block (4, not shown). 
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Figure 3: A: Surface colonization of pine wood by P. pulmonarius; B: Surface 
colonization of 400°C charcoal by P. pulmonarius; C: Surface colonization of 400°C 
charcoal by C. versicolor; D: Surface colonization of 300°C charcoal by C. versicolor 
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Figure 4: A: Interior structures of pine wood prior to fungal incubation, B: Interior 
structures of pine wood showing degradation by P. pulmonarius fungi following 3 
months fungal incubation, C: growth structures of C. versicolor fungi on surfaces of 
fissures extending to the block interior in 300°C charcoal, D: growth structures of C. 
versicolor fungi on surfaces of fissures extending to the block interior in 400°C 
charcoal. 
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Figure 5: Variation in δ13C with sampling location; 1: Exterior block surface, 2: 1-
2mm depth from top, 3: 7-8 mm depth from top, 4: 9-10 mm depth from top, 5: 7-8 
mm depth from base, 6: 1-2mm depth from base. PW = pine wood, PC-300 = 300°C 
charcoal, PC-400 = 400°C charcoal, Pp= P. pulmonarius, Cv=C.versicolor. 
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Figure 6: variation in δ15N with sampling location 1: Exterior block surface, 2: 1-2mm 
depth from top, 3: 7-8 mm depth from top, 4: 9-10 mm depth from top, 5: 7-8 mm 
depth from base, 6: 1-2mm depth from base. PW = pine wood, PC-300 = 300°C 
charcoal, PC-400 = 400°C charcoal, Pp= P. pulmonarius, Cv=C.versicolor. 
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Figure 7: Isotopic variation in both δ13C and δ15N in samples. PW = pine wood, PC-
300 = 300°C charcoal, PC-400 = 400°C charcoal. Circles show groupings of values 
for different substrates and fungi species, Pp= P. pulmonarius, Cv=C.versicolor. 
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