49 research outputs found

    Photovoltaic system test facility electromagnetic interference measurements

    Get PDF
    Field strength measurements on a single row of panels indicates that the operational mode of the array as configured presents no radiated EMI problems. Only one relatively significant frequency band near 200 kHz showed any degree of intensity (9 muV/m including a background level of 5 muV/m). The level was measured very near the array (at 20 ft distance) while Federal Communications Commission (FCC) regulations limit spurious emissions to 15 muV/m at 1,000 ft. No field strength readings could be obtained even at 35 ft distant

    A Trap for Use on Tidal Weirs and Streams

    Get PDF
    Over 100,000 ha of Louisiana coastal marsh have been semi-impounded by weir construction. This paper describes a trap designed specifically for use at weirs to study certain aspects of the juvenile life history of aquatic species. The trap could be modified easily for use in other situations

    Estimating the retrotransposition rate of human Alu elements

    Get PDF
    Mobile elements such as Alu repeats have substantially altered the architecture of the human genome, and de novo mobile element insertions sometimes cause genetic disorders. Previous estimates for the retrotransposition rate (RR) of Alu elements in humans of one new insertion every ∼100-125 births were developed prior to the sequencing of the human and chimpanzee genomes. Here, we used two independent methods (based on the new genomic data and on disease-causing de novo Alu insertions) to generate refined Alu RR estimates in humans. Both methods consistently yielded RR on the order of one new Alu insertion every ∼20 births, despite the fact that the evolutionary-based method represents an average RR over the past ∼6 million years while the mutation-based method better reflects the current-day RR. These results suggest that Alu elements retrotranspose at a faster rate in humans than previously thought, and support the potential of Alu elements as mutagenic factors in the human genome. © 2006 Elsevier B.V. All rights reserved

    A SINE-based dichotomous key for primate identification

    Get PDF
    For DNA samples or \u27divorced\u27 tissues, identifying the organism from which they were taken generally requires some type of analytical method. The ideal approach would be robust even in the hands of a novice, requiring minimal equipment, time, and effort. Genotyping SINEs (Short INterspersed Elements) is such an approach as it requires only PCR-related equipment, and the analysis consists solely of interpreting fragment sizes in agarose gels. Modern primate genomes are known to contain lineage-specific insertions of Alu elements (a primate-specific SINE); thus, to demonstrate the utility of this approach, we used members of the Alu family to identify DNA samples from evolutionarily divergent primate species. For each node of a combined phylogenetic tree (56 species; n = 8 [Hominids]; 11 [New World monkeys]; 21 [Old World monkeys]; 2 [Tarsiformes]; and, 14 [Strepsirrhines]), we tested loci (\u3e 400 in total) from prior phylogenetic studies as well as newly identified elements for their ability to amplify in all 56 species. Ultimately, 195 loci were selected for inclusion in this Alu-based key for primate identification. This dichotomous SINE-based key is best used through hierarchical amplification, with the starting point determined by the level of initial uncertainty regarding sample origin. With newly emerging genome databases, finding informative retrotransposon insertions is becoming much more rapid; thus, the general principle of using SINEs to identify organisms is broadly applicable. © 2006 Elsevier B.V. All rights reserved

    Alu retrotransposition-mediated deletion

    Get PDF
    Alu repeats contribute to genomic instability in primates via insertional and recombinational mutagenesis. Here, we report an analysis of Alu element-induced genomic instability through a novel mechanism termed retrotransposition-mediated deletion, and assess its impact on the integrity of primate genomes. For human and chimpanzee genomes, we find evidence of 33 retrotransposition-mediated deletion events that have eliminated approximately 9000 nucleotides of genomic DNA. Our data suggest that, during the course of primate evolution, Alu retrotransposition may have contributed to over 3000 deletion events, eliminating approximately 900 kb of DNA in the process. Potential mechanisms for the creation of Alu retrotransposition-mediated deletions include L1 endonuclease-dependent retrotransposition, L1 endonuclease-independent retrotransposition, internal priming on DNA breaks, and promiscuous target primed reverse transcription. A comprehensive analysis of the collateral effects by Alu mobilization on all primate genomes will require sequenced genomes from representatives of the entire order. © 2005 Elsevier Ltd. All rights reserved

    Alu retrotransposition-mediated deletion,”

    Get PDF
    Alu repeats contribute to genomic instability in primates via insertional and recombinational mutagenesis. Here, we report an analysis of Alu elementinduced genomic instability through a novel mechanism termed retrotransposition-mediated deletion, and assess its impact on the integrity of primate genomes. For human and chimpanzee genomes, we find evidence of 33 retrotransposition-mediated deletion events that have eliminated approximately 9000 nucleotides of genomic DNA. Our data suggest that, during the course of primate evolution, Alu retrotransposition may have contributed to over 3000 deletion events, eliminating approximately 900 kb of DNA in the process. Potential mechanisms for the creation of Alu retrotransposition-mediated deletions include L1 endonuclease-dependent retrotransposition, L1 endonuclease-independent retrotransposition, internal priming on DNA breaks, and promiscuous target primed reverse transcription. A comprehensive analysis of the collateral effects by Alu mobilization on all primate genomes will require sequenced genomes from representatives of the entire order

    Longitudinal assessment of cognitive and psychosocial functioning after Hurricanes Katrina and Rita: Exploring disaster impact on middle-aged, older, and oldest-old adults

    Get PDF
    The authors examined the effects of Hurricanes Katrina and Rita on cognitive and psychosocial functioning in a lifespan sample of adults 6-14 months after the storms. Participants were recruited from the Louisiana Healthy Aging Study. Most were assessed during the immediate impact period and retested for this study. Analyses of pre- and post-disaster cognitive data confirmed that storm-related decrements in working memory for middle-aged and older adults observed in the immediate impact period had returned to pre-hurricane levels in the post-disaster recovery period. Middle-aged adults reported more storm-related stressors and greater levels of stress than the two older groups at both waves of testing. These results are consistent with a burden perspective on post-disaster psychological reactions. © 2012 Wiley Periodicals, Inc

    Do teashirt family genes specify trunk identity? Insights from the single tiptop/teashirt homolog of Tribolium castaneum

    Get PDF
    The Drosophila teashirt gene acts in concert with the homeotic selector (Hox) genes to specify trunk (thorax and abdomen) identity. There has been speculation that this trunk-specifying function might be very ancient, dating back to the common ancestor of insects and vertebrates. However, other evidence suggests that the role of teashirt in trunk identity is not well conserved even within the Insecta. To address this issue, we have analyzed the function of Tc-tiotsh, the lone teashirt family member in the red flour beetle, Tribolium castaneum. Although Tc-tiotsh is important for aspects of both embryonic and imaginal development including some trunk features, we find no evidence that it acts as a trunk identity gene. We discuss this finding in the context of recent insights into the evolution and function of the Drosophila teashirt family genes

    Changing Hydrozoan Bauplans by Silencing Hox-Like Genes

    Get PDF
    Regulatory genes of the Antp class have been a major factor for the invention and radiation of animal bauplans. One of the most diverse animal phyla are the Cnidaria, which are close to the root of metazoan life and which often appear in two distinct generations and a remarkable variety of body forms. Hox-like genes have been known to be involved in axial patterning in the Cnidaria and have been suspected to play roles in the genetic control of many of the observed bauplan changes. Unfortunately RNAi mediated gene silencing studies have not been satisfactory for marine invertebrate organisms thus far. No direct evidence supporting Hox-like gene induced bauplan changes in cnidarians have been documented as of yet. Herein, we report a protocol for RNAi transfection of marine invertebrates and demonstrate that knock downs of Hox-like genes in Cnidaria create substantial bauplan alterations, including the formation of multiple oral poles (“heads”) by Cnox-2 and Cnox-3 inhibition, deformation of the main body axis by Cnox-5 inhibition and duplication of tentacles by Cnox-1 inhibition. All phenotypes observed in the course of the RNAi studies were identical to those obtained by morpholino antisense oligo experiments and are reminiscent of macroevolutionary bauplan changes. The reported protocol will allow routine RNAi studies in marine invertebrates to be established

    Phylogeography of two squid (Loligo pealei and L. plei) in the Gulf of Mexico and northwestern Atlantic Ocean

    No full text
    The loliginid squids Loligo pealei LeSueur and L. plei Blaineville (both recently proposed for reclassification as Doryteuthis) are commercially important, similar in appearance, and sympatric throughout much of the northwestern Atlantic Ocean, the Gulf of Mexico, and the Caribbean Sea. To investigate possible cryptic speciation and population structure, we examined samples (collected from 1995 to 1997) of both species for restriction fragment length polymorphisms (RFLPs) in PCR products of the mitochondrial gene cytochrome c oxidase (subunit I). RFLP haplotypes were further characterized by direct sequencing. In North American waters, cryptic speciation was rejected by the far greater nucleotide sequence divergence between species (~14%) versus within species (<1%). Each species displayed about a dozen RFLP haplotypes, but only three of their respective haplotypes were found among 90% of L. pealei specimens (n=356) and 97% of L. plei specimens (n=431). For L. pealei, a genetic break existed between the northern Gulf of Mexico and the Atlantic Ocean; among sample units within each population, gene flow was consistent with panmixia. The phylogeography of L. pealei is likely a consequence of the eastward currents of the Florida Straits, the elevated temperatures of those surface waters, and the restriction of this species to the continental shelf. For L. plei, a genetic break existed between longitudes 88°W and 89°W, with the northwestern Gulf of Mexico and the northeastern Gulf–Atlantic Ocean comprising separate populations; among sample units within each population, gene flow fit an isolation-by-distance model. If the genetic break found for L. plei represents resident populations separated by nearshore physical parameters (e.g. effects of the Mississippi River and the sediment boundary at longitude 88°W), the lack of structure within the Gulf for L. pealei might be due to its distribution farther from shore. However, the two populations of L. plei probably represent annual recolonization from the southwestern Gulf of Mexico and from the eastern Caribbean Sea, whereas the populations of L. pealei probably are permanent residents within their respective regions
    corecore