174 research outputs found

    Towards Safer Smart Contracts: A Survey of Languages and Verification Methods

    Get PDF
    With a market capitalisation of over USD 205 billion in just under ten years, public distributed ledgers have experienced significant adoption. Apart from novel consensus mechanisms, their success is also accountable to smart contracts. These programs allow distrusting parties to enter agreements that are executed autonomously. However, implementation issues in smart contracts caused severe losses to the users of such contracts. Significant efforts are taken to improve their security by introducing new programming languages and advance verification methods. We provide a survey of those efforts in two parts. First, we introduce several smart contract languages focussing on security features. To that end, we present an overview concerning paradigm, type, instruction set, semantics, and metering. Second, we examine verification tools and methods for smart contract and distributed ledgers. Accordingly, we introduce their verification approach, level of automation, coverage, and supported languages. Last, we present future research directions including formal semantics, verified compilers, and automated verification

    Neutrinoless double beta decay and the baryon asymmetry of the Universe

    Get PDF
    We discuss the impact of the observation of neutrinoless double beta decay on the washout of lepton number in the early universe. Neutrinoless double beta decay can be triggered by a large number of mechanisms that can be encoded in terms of standard model effective operators which violate lepton number by two units. We calculate the contribution of such operators to the rate of neutrinoless double beta decay and correlate it with the washout of lepton number induced by the same operators in the early universe. We find that the observation of a nonstandard contribution to neutrinoless double beta decay, i.e., not induced by the standard mass mechanism of light neutrino exchange, would correspond to an efficient washout of lepton number above the electroweak scale for many operators up to mass dimension 11. Combined with standard model sphaleron transitions, this would render many baryogenesis mechanisms at higher scales ineffective

    Stablecoins 2.0: Economic Foundations and Risk-based Models

    Full text link
    Stablecoins are one of the most widely capitalized type of cryptocurrency. However, their risks vary significantly according to their design and are often poorly understood. We seek to provide a sound foundation for stablecoin theory, with a risk-based functional characterization of the economic structure of stablecoins. First, we match existing economic models to the disparate set of custodial systems. Next, we characterize the unique risks that emerge in non-custodial stablecoins and develop a model framework that unifies existing models from economics and computer science. We further discuss how this modeling framework is applicable to a wide array of cryptoeconomic systems, including cross-chain protocols, collateralized lending, and decentralized exchanges. These unique risks yield unanswered research questions that will form the crux of research in decentralized finance going forward

    A study of Docetaxel-induced effects in MCF-7 cells by means of Raman microspectroscopy

    Get PDF
    Chemotherapies feature a low success rate of about 25%, and therefore, the choice of the most effective cytostatic drug for the individual patient and monitoring the efficiency of an ongoing chemotherapy are important steps towards personalized therapy. Thereby, an objective method able to differentiate between treated and untreated cancer cells would be essential. In this study, we provide molecular insights into Docetaxel-induced effects in MCF-7 cells, as a model system for adenocarcinoma, by means of Raman microspectroscopy combined with powerful chemometric methods. The analysis of the Raman data is divided into two steps. In the first part, the morphology of cell organelles, e.g. the cell nucleus has been visualized by analysing the Raman spectra with k-means cluster analysis and artificial neural networks and compared to the histopathologic gold standard method hematoxylin and eosin staining. This comparison showed that Raman microscopy is capable of displaying the cell morphology; however, this is in contrast to hematoxylin and eosin staining label free and can therefore be applied potentially in vivo. Because Docetaxel is a drug acting within the cell nucleus, Raman spectra originating from the cell nucleus region were further investigated in a next step. Thereby we were able to differentiate treated from untreated MCF-7 cells and to quantify the cell–drug response by utilizing linear discriminant analysis models

    Abscisic acid induced a negative geotropic response in dark-incubated Chlamydomonas reinhardtii

    Get PDF
    © 2019, The Author(s). The phytohormone abscisic acid (ABA) plays a role in stresses that alter plant water status and may also regulate root gravitropism and hydrotropism. ABA also exists in the aquatic algal progenitors of land plants, but other than its involvement in stress responses, its physiological role in these microorganisms remains elusive. We show that exogenous ABA significantly altered the HCO3− uptake of Chamydomonas reinhardtii in a light-intensity-dependent manner. In high light ABA enhanced HCO3− uptake, while under low light uptake was diminished. In the dark, ABA induced a negative geotropic movement of the algae to an extent dependent on the time of sampling during the light/dark cycle. The algae also showed a differential, light-dependent directional taxis response to a fixed ABA source, moving horizontally towards the source in the light and away in the dark. We conclude that light and ABA signal competitively in order for algae to position themselves in the water column to minimise photo-oxidative stress and optimise photosynthetic efficiency. We suggest that the development of this response mechanism in motile algae may have been an important step in the evolution of terrestrial plants and that its retention therein strongly implicates ABA in the regulation of their relevant tropisms

    The Forward Physics Facility at the High-Luminosity LHC

    Get PDF
    High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF's physics potential

    EuCAPT White Paper: Opportunities and Challenges for Theoretical Astroparticle Physics in the Next Decade

    Get PDF
    Astroparticle physics is undergoing a profound transformation, due to a series of extraordinary new results, such as the discovery of high-energy cosmic neutrinos with IceCube, the direct detection of gravitational waves with LIGO and Virgo, and many others. This white paper is the result of a collaborative effort that involved hundreds of theoretical astroparticle physicists and cosmologists, under the coordination of the European Consortium for Astroparticle Theory (EuCAPT). Addressed to the whole astroparticle physics community, it explores upcoming theoretical opportunities and challenges for our field of research, with particular emphasis on the possible synergies among different subfields, and the prospects for solving the most fundamental open questions with multi-messenger observations.Comment: White paper of the European Consortium for Astroparticle Theory (EuCAPT). 135 authors, 400 endorsers, 133 pages, 1382 reference
    • 

    corecore