677 research outputs found

    Pressure-induced structural transitions in MgH2{_2}

    Full text link
    The stability of MgH2_2 has been studied up to 20~GPa using density-functional total-energy calculations. At ambient pressure α\alpha-MgH2{_2} takes a TiO2_2-rutile-type structure. α\alpha-MgH2_2 is predicted to transform into γ\gamma-MgH2{_2} at 0.39~GPa. The calculated structural data for α\alpha- and γ\gamma-MgH2{_2} are in very good agreement with experimental values. At equilibrium the energy difference between these modifications is very small, and as a result both phases coexist in a certain volume and pressure field. Above 3.84~GPa γ\gamma-MgH2{_2} transforms into β\beta-MgH2{_2}; consistent with experimental findings. Two further transformations have been identified at still higher pressure: i) β\beta- to δ\delta-MgH2{_2} at 6.73 GPa and (ii) δ\delta- to ϵ\epsilon-MgH2{_2} at 10.26~GPa.Comment: 4 pages, 4 figure

    Binary continuous random networks

    Full text link
    Many properties of disordered materials can be understood by looking at idealized structural models, in which the strain is as small as is possible in the absence of long-range order. For covalent amorphous semiconductors and glasses, such an idealized structural model, the continuous-random network, was introduced 70 years ago by Zachariasen. In this model, each atom is placed in a crystal-like local environment, with perfect coordination and chemical ordering, yet longer-range order is nonexistent. Defects, such as missing or added bonds, or chemical mismatches, however, are not accounted for. In this paper we explore under which conditions the idealized CRN model without defects captures the properties of the material, and under which conditions defects are an inherent part of the idealized model. We find that the density of defects in tetrahedral networks does not vary smoothly with variations in the interaction strengths, but jumps from close-to-zero to a finite density. Consequently, in certain materials, defects do not play a role except for being thermodynamical excitations, whereas in others they are a fundamental ingredient of the ideal structure.Comment: Article in honor of Mike Thorpe's 60th birthday (to appear in J. Phys: Cond Matt.

    Simulations of Time-Resolved X-Ray Diffraction in Laue Geometry

    Full text link
    A method of computer simulation of Time-Resolved X-ray Diffraction (TRXD) in asymmetric Laue (transmission) geometry with an arbitrary propagating strain perpendicular to the crystal surface is presented. We present two case studies for possible strain generation by short-pulse laser irradiation: (i) a thermoelastic-like analytic model; (ii) a numerical model including effects of electron-hole diffusion, Auger recombination, deformation potential and thermal diffusion. A comparison with recent experimental results is also presented.Comment: 9 pages, 11 figure

    Time dependence of Bragg forward scattering and self-seeding of hard x-ray free-electron lasers

    Get PDF
    Free-electron lasers (FELs) can now generate temporally short, high power x-ray pulses of unprecedented brightness, even though their longitudinal coherence is relatively poor. The longitudinal coherence can be potentially improved by employing narrow bandwidth x-ray crystal optics, in which case one must also understand how the crystal affects the field profile in time and space. We frame the dynamical theory of x-ray diffraction as a set of coupled waves in order to derive analytic expressions for the spatiotemporal response of Bragg scattering from temporally short incident pulses. We compute the profiles of both the reflected and forward scattered x-ray pulses, showing that the time delay of the wave τ\tau is linked to its transverse spatial shift Δx\Delta x through the simple relationship Δx=cτcotθ\Delta x = c\tau \cot\theta, where θ\theta is the grazing angle of incidence to the diffracting planes. Finally, we apply our findings to obtain an analytic description of Bragg forward scattering relevant to monochromatically seed hard x-ray FELs.Comment: 11 pages, 6 figure

    On the Early History of Current Algebra

    Full text link
    The history of Current Algebra is reviewed up to the appearance of the Adler-Weisberger sum rule. Particular emphasis is given to the role current algebra played for the historical struggle in strong interaction physics of elementary particles between the S-matrix approach based on dispersion relations and field theory. The question whether there are fundamental particles or all hadrons are bound or resonant states of one another played an important role in this struggle and is thus also regarded.Comment: 17 page

    Properties of a continuous-random-network model for amorphous systems

    Full text link
    We use a Monte Carlo bond-switching method to study systematically the thermodynamic properties of a "continuous random network" model, the canonical model for such amorphous systems as a-Si and a-SiO2_2. Simulations show first-order "melting" into an amorphous state, and clear evidence for a glass transition in the supercooled liquid. The random-network model is also extended to study heterogeneous structures, such as the interface between amorphous and crystalline Si.Comment: Revtex file with 4 figure

    Supersonic strain front driven by a dense electron-hole plasma

    Get PDF
    We study coherent strain in (001) Ge generated by an ultrafast laser-initiated high density electron-hole plasma. The resultant coherent pulse is probed by time-resolved x-ray diffraction through changes in the anomalous transmission. The acoustic pulse front is driven by ambipolar diffusion of the electron-hole plasma and propagates into the crystal at supersonic speeds. Simulations of the strain including electron-phonon coupling, modified by carrier diffusion and Auger recombination, are in good agreement with the observed dynamics.Comment: 4 pages, 6 figure

    Spatiotemporal Response of Crystals in X-ray Bragg Diffraction

    Full text link
    The spatiotemporal response of crystals in x-ray Bragg diffraction resulting from excitation by an ultra-short, laterally confined x-ray pulse is studied theoretically. The theory presents an extension of the analysis in symmetric reflection geometry [1] to the generic case, which includes Bragg diffraction both in reflection (Bragg) and transmission (Laue) asymmetric scattering geometries. The spatiotemporal response is presented as a product of a crystal-intrinsic plane wave spatiotemporal response function and an envelope function defined by the crystal-independent transverse profile of the incident beam and the scattering geometry. The diffracted wavefields exhibit amplitude modulation perpendicular to the propagation direction due to both angular dispersion and the dispersion due to Bragg's law. The characteristic measure of the spatiotemporal response is expressed in terms of a few parameters: the extinction length, crystal thickness, Bragg angle, asymmetry angle, and the speed of light. Applications to self-seeding of hard x-ray free electron lasers are discussed, with particular emphasis on the relative advantages of using either the Bragg or Laue scattering geometries. Intensity front inclination in asymmetric diffraction can be used to make snapshots of ultra-fast processes with femtosecond resolution

    Polyhedral units and network connectivity in calcium aluminosilicate glasses from high-energy x-ray diffraction

    Full text link
    Structure factors for Cax/2AlxSi1-xO2 glasses (x=0,0.25,0.5,0.67) extended to a wave vector of magnitude Q= 40 1/A have been obtained by high-energy x-ray diffraction. For the first time, it is possible to resolve the contributions of Si-O, Al-O and Ca-O coordination polyhedra to the experimental atomic pair distribution functions (PDF). It has been found that both Si and Al are four-fold coordinated and so participate in a continuous tetrahedral network at low values of x. The number of network breaking defects in the form of non-bridging oxygens (NBO's) increases slowly with x until x=0.5 (NBO's ~ 10% at x=0.5). By x=0.67 the network breaking defects become significant as evidenced by the significant drop in the average coordination number of Si. By contrast, Al-O tetrahedra remain free of NBO's and fully integrated in the Al/Si-O network for all values of x. Calcium maintains a rather uniform coordination sphere of approximately 5 oxygen atoms for all values of x. The results suggest that not only Si/Al-O tetrahedra but Ca-O polyhedra, too, play a role in determining the glassy structure
    corecore