3,499 research outputs found
Protection without imprisonment for all embarrassed debtors: why not?
26 pages. Dedicated by permission to Charles Dickens, Esq.
http://morris.law.yale.edu/record=b214254https://digitalcommons.law.yale.edu/britlaw/1010/thumbnail.jp
Leukotriene B4 (LTB4) and its receptor in Experimental Autoimmune Uveitis (EAU) and in human retinal tissues: clinical severity and LTB4-dependence of retinal Th17 cells
Nomacopan, a drug originally derived from tick saliva, has dual functions of sequestering leukotriene B4 (LTB4) and inhibiting complement component 5 (C5) activation. It was demonstrated that nomacopan provides therapeutic benefit in experimental autoimmune uveitis (EAU). The longer-acting forms of nomacopan were more efficacious in mouse EAU models and the long-acting variant that inhibited only LTB4 was at least as effective as the long-acting variant that inhibited both C5 and LTB4, preventing structural damage to the retina and a significant reduction of effector Th17 cells and inflammatory macrophages.
Increased levels of LTB4 and C5a (produced upon C5 activation) were detected during disease progression. Retinal activated lymphocytes were shown to express LTB4 receptors (R) in vitro and in inflamed draining lymph nodes (dLN). Levels of LTB4R-expressing retinal active/inflammatory macrophages were also increased. Within the dLN CD4+T cell population, 30% expressed LTB4R+ following activation in vitro, while retinal infiltrating cells expressed LTB4R and C5aR. Validation of expression of those receptors in human uveitis and healthy tissues suggests that infiltrating cells could be targeted by inhibitors of the LTB4-BLT1 pathway as a novel therapeutic approach. In conclusion, this study provides novel data on intraocular LTB4 and C5a in EAU, their associated receptor expression by retinal infiltrating cells in mouse and human tissues and in attenuating EAU via the dual inhibitor nomacopan
A Phase transition in acoustic propagation in 2D random liquid media
Acoustic wave propagation in liquid media containing many parallel air-filled
cylinders is considered. A self-consistent method is used to compute rigorously
the propagation, incorporating all orders of multiple scattering. It is shown
that under proper conditions, multiple scattering leads to a peculiar phase
transition in acoustic propagation. When the phase transition occurs, a
collective behavior of the cylinders appears and the acoustic waves are
confined in a region of space in the neighborhood of the transmission source. A
novel phase diagram is used to describe such phase transition.
Originally submitted on April 6, 99.Comment: 5 pages, 5 color figure
Training a convolutional neural network for real–bogus classification in the ATLAS survey
We present a convolutional neural network (CNN) for use in the real–bogus classification of transient detections made by the Asteroid Terrestrial-impact Last Alert System (ATLAS) and subsequent efforts to improve performance since initial development. In transient detection surveys, the number of alerts made outstrips the capacity for human scanning, necessitating the use of machine learning aids to reduce the number of false positives presented to annotators. We take a sample of recently annotated data from each of the three operating ATLAS telescope with 340 000 real (known transients) and 1030 000 bogus detections per model. We retrained the CNN architecture with these data specific to each ATLAS unit, achieving a median false positive rate (FPR) of 0.72 per cent for a 1.00 per cent missed detection rate. Further investigations indicate that if we reduce the input image size it results in increased FPR. Finally architecture adjustments and comparisons to contemporary CNNs indicate that our retrained classifier is providing an optimal FPR. We conclude that the periodic retraining and readjustment of classification models on survey data can yield significant improvements as data drift arising from changes in the optical and detector performance can lead to new features in the model and subsequent deteriorations in performance
Hyperuniversality of Fully Anisotropic Three-Dimensional Ising Model
For the fully anisotropic simple-cubic Ising lattice, the critical
finite-size scaling amplitudes of both the spin-spin and energy-energy inverse
correlation lengths and the singular part of the reduced free-energy density
are calculated by the transfer-matrix method and a finite-size scaling for
cyclic L x L x oo clusters with L=3 and 4. Analysis of the data obtained shows
that the ratios and the directional geometric means of above amplitudes are
universal.Comment: RevTeX 3.0, 24 pages, 2 figures upon request, accepted for
publication in Phys. Rev.
Universal amplitudes in the FSS of three-dimensional spin models
In a MC study using a cluster update algorithm we investigate the finite-size
scaling (FSS) of the correlation lengths of several representatives of the
class of three-dimensional classical O(n) symmetric spin models on a column
geometry. For all considered models we find strong evidence for a linear
relation between FSS amplitudes and scaling dimensions when applying
antiperiodic instead of periodic boundary conditions across the torus. The
considered type of scaling relation can be proven analytically for systems on
two-dimensional strips with periodic bc using conformal field theoryComment: 4 pages, RevTex, uses amsfonts.sty, 3 Figure
Broadside radar echoes from ionized trails
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77210/1/AIAA-2347-553.pd
Inhibition in multiclass classification
The role of inhibition is investigated in a multiclass support vector machine formalism inspired by the brain structure of insects. The so-called mushroom bodies have a set of output neurons, or classification functions,
that compete with each other to encode a particular input. Strongly active output neurons depress or inhibit the remaining outputs without knowing which is correct or incorrect. Accordingly, we propose to use a
classification function that embodies unselective inhibition and train it in the large margin classifier framework. Inhibition leads to more robust classifiers in the sense that they perform better on larger areas of appropriate hyperparameters when assessed with leave-one-out strategies. We also show that the classifier with inhibition is a tight bound to probabilistic exponential models and is Bayes consistent for 3-class problems.
These properties make this approach useful for data sets with a limited number of labeled examples. For larger data sets, there is no significant comparative advantage to other multiclass SVM approaches
Inhibition in multiclass classification
The role of inhibition is investigated in a multiclass support vector machine formalism inspired by the brain structure of insects. The so-called mushroom bodies have a set of output neurons, or classification functions,
that compete with each other to encode a particular input. Strongly active output neurons depress or inhibit the remaining outputs without knowing which is correct or incorrect. Accordingly, we propose to use a
classification function that embodies unselective inhibition and train it in the large margin classifier framework. Inhibition leads to more robust classifiers in the sense that they perform better on larger areas of appropriate hyperparameters when assessed with leave-one-out strategies. We also show that the classifier with inhibition is a tight bound to probabilistic exponential models and is Bayes consistent for 3-class problems.
These properties make this approach useful for data sets with a limited number of labeled examples. For larger data sets, there is no significant comparative advantage to other multiclass SVM approaches
Photography as an act of collaboration
The camera is usually considered to be a passive tool under the control of the operator. This definition implicitly constrains how we use the medium, as well as how we look at – and what we see in – its interpretations of scenes, objects, events and ‘moments’. This text will suggest another way of thinking about – and using – the photographic medium. Based on the evidence of photographic practice (mine and others’), I will suggest that, as a result of the ways in which the medium interprets, juxtaposes and renders the elements in front of the lens, the camera is capable of depicting scenes, events and moments that did not exist and could not have existed until brought into being by the act of photographing them. Accordingly, I will propose that the affective power of many photographs is inseparable from their ‘photographicness’ – and that the photographic medium should therefore be considered as an active collaborator in the creation of uniquely photographic images
- …