242 research outputs found

    Regio Innovatie Tour : een RIT langs de praktijk van regionale innovatieprojecten

    Get PDF
    De weerslag van de Regio Innovatie Tour is terug te vinden in deze brochure. Twee dagen lang toerden vertegenwoordigers van regionale overheden, landbouworganisaties en onderzoekers op uitnodiging van Wageningen UR langs acht innovatieve projecten. Deze projecten zijn voortgekomen uit het onderzoek naar systeeminnovaties. Van elk project is een beschrijving gegeven met een concrete casus als voorbeeld. Ook is aangegeven welk instrument het belangrijkste is geweest om het project aan te jagen en welke voorwaarden vervuld moeten worden wil het project een succes worde

    The Emerging Role of Ofatumumab in the Treatment of Chronic Lymphocytic Leukemia

    Get PDF
    The treatment of chronic lymphocytic leukemia (CLL) has evolved over the past decade. Our better understanding of disease biology and risk stratification has allowed delivering more effective therapies. In fact, front-line chemoimmunotherapy has demonstrated improvement in overall survival when compared to chemotherapy in randomized studies. Yet, treatment of relapsed CLL remains challenging and few agents are effective in that setting. Ofatumumab (Ofa) is a humanized monoclonal antibody targeted against CD20 with demonstrable activity in rituximab-resistant CLL cell lines. This agent was recently approved for the treatment of relapsed/refractory CLL patients who have failed fludarabine and alemtuzumab. In this review, we provide a historical perspective on approaches to CLL as front-line and in the relapsed setting. We further summarize novel anti-CD20 antibodies with specific emphasis on ofa. We review studies that led to ofatumumab’s approval including pre-clinical data, trials using ofa in combination therapies, and adverse events/toxicities reported with this agent

    Rituximab in B-Cell Hematologic Malignancies: A Review of 20 Years of Clinical Experience

    Get PDF
    Rituximab is a human/murine, chimeric anti-CD20 monoclonal antibody with established efficacy, and a favorable and well-defined safety profile in patients with various CD20-expressing lymphoid malignancies, including indolent and aggressive forms of B-cell non-Hodgkin lymphoma. Since its first approval 20 years ago, intravenously administered rituximab has revolutionized the treatment of B-cell malignancies and has become a standard component of care for follicular lymphoma, diffuse large B-cell lymphoma, chronic lymphocytic leukemia, and mantle cell lymphoma. For all of these diseases, clinical trials have demonstrated that rituximab not only prolongs the time to disease progression but also extends overall survival. Efficacy benefits have also been shown in patients with marginal zone lymphoma and in more aggressive diseases such as Burkitt lymphoma. Although the proven clinical efficacy and success of rituximab has led to the development of other anti-CD20 monoclonal antibodies in recent years (e.g., obinutuzumab, ofatumumab, veltuzumab, and ocrelizumab), rituximab is likely to maintain a position within the therapeutic armamentarium because it is well established with a long history of successful clinical use. Furthermore, a subcutaneous formulation of the drug has been approved both in the EU and in the USA for the treatment of B-cell malignancies. Using the wealth of data published on rituximab during the last two decades, we review the preclinical development of rituximab and the clinical experience gained in the treatment of hematologic B-cell malignancies, with a focus on the well-established intravenous route of administration. This article is a companion paper to A. Davies, et al., which is also published in this issue

    RELEASE-HF study:a protocol for an observational, registry-based study on the effectiveness of telemedicine in heart failure in the Netherlands

    Get PDF
    Introduction:Meta-analyses show postive effects of telemedicine in heart failure (HF) management on hospitalisation, mortality and costs. However, these effects are heterogeneous due to variation in the included HF population, the telemedicine components and the quality of the comparator usual care. Still, telemedicine is gaining acceptance in HF management. The current nationwide study aims to identify (1) in which subgroup(s) of patients with HF telemedicine is (cost-)effective and (2) which components of telemedicine are most (cost-) effective. Methods and analysis:The RELEASE-HF ('REsponsible roLl-out of E-heAlth through Systematic Evaluation -Heart Failure') study is a multicentre, observational, registry-based cohort study that plans to enrol 6480 patients with HF using data from the HF registry facilitated by the Netherlands Heart Registration. Collected data include patient characteristics, treatment information and clinical outcomes, and are measured at HF diagnosis and at 6 and 12 months afterwards. The components of telemedicine are described at the hospital level based on closed-ended interviews with clinicians and at the patient level based on additional data extracted from electronic health records and telemedicine-generated data. The costs of telemedicine are calculated using registration data and interviews with clinicians and finance department staff. To overcome missing data, additional national databases will be linked to the HF registry if feasible. Heterogeneity of the effects of offering telemedicine compared with not offering on days alive without unplanned hospitalisations in 1 year is assessed across predefined patient characteristics using exploratory stratified analyses. The effects of telemedicine components are assessed by fitting separate models for component contrasts. Ethics and dissemination:The study has been approved by the Medical Ethics Committee 2021 of the University Medical Center Utrecht (the Netherlands). Results will be published in peer-reviewed journals and presented at (inter)national conferences. Effective telemedicine scenarios will be proposed among hospitals throughout the country and abroad, if applicable and feasible.</p

    RELEASE-HF study:a protocol for an observational, registry-based study on the effectiveness of telemedicine in heart failure in the Netherlands

    Get PDF
    Introduction:Meta-analyses show postive effects of telemedicine in heart failure (HF) management on hospitalisation, mortality and costs. However, these effects are heterogeneous due to variation in the included HF population, the telemedicine components and the quality of the comparator usual care. Still, telemedicine is gaining acceptance in HF management. The current nationwide study aims to identify (1) in which subgroup(s) of patients with HF telemedicine is (cost-)effective and (2) which components of telemedicine are most (cost-) effective. Methods and analysis:The RELEASE-HF ('REsponsible roLl-out of E-heAlth through Systematic Evaluation -Heart Failure') study is a multicentre, observational, registry-based cohort study that plans to enrol 6480 patients with HF using data from the HF registry facilitated by the Netherlands Heart Registration. Collected data include patient characteristics, treatment information and clinical outcomes, and are measured at HF diagnosis and at 6 and 12 months afterwards. The components of telemedicine are described at the hospital level based on closed-ended interviews with clinicians and at the patient level based on additional data extracted from electronic health records and telemedicine-generated data. The costs of telemedicine are calculated using registration data and interviews with clinicians and finance department staff. To overcome missing data, additional national databases will be linked to the HF registry if feasible. Heterogeneity of the effects of offering telemedicine compared with not offering on days alive without unplanned hospitalisations in 1 year is assessed across predefined patient characteristics using exploratory stratified analyses. The effects of telemedicine components are assessed by fitting separate models for component contrasts. Ethics and dissemination:The study has been approved by the Medical Ethics Committee 2021 of the University Medical Center Utrecht (the Netherlands). Results will be published in peer-reviewed journals and presented at (inter)national conferences. Effective telemedicine scenarios will be proposed among hospitals throughout the country and abroad, if applicable and feasible.</p

    The PI3-kinase delta inhibitor idelalisib (GS-1101) targets integrin-mediated adhesion of chronic lymphocytic leukemia (CLL) cell to endothelial and marrow stromal cells

    Get PDF
    CLL cell trafficking between blood and tissue compartments is an integral part of the disease process. Idelalisib, a phosphoinositide 3-kinase delta (PI3K\u3b4) inhibitor causes rapid lymph node shrinkage, along with an increase in lymphocytosis, prior to inducing objective responses in CLL patients. This characteristic activity presumably is due to CLL cell redistribution from tissues into the blood, but the underlying mechanisms are not fully understood. We therefore analyzed idelalisib effects on CLL cell adhesion to endothelial and bone marrow stromal cells (EC, BMSC). We found that idelalisib inhibited CLL cell adhesion to EC and BMSC under static and shear flow conditions. TNF\u3b1-induced VCAM-1 (CD106) expression in supporting layers increased CLL cell adhesion and accentuated the inhibitory effect of idelalisib. Co-culture with EC and BMSC also protected CLL from undergoing apoptosis, and this EC- and BMSC-mediated protection was antagonized by idelalisib. Furthermore, we demonstrate that CLL cell adhesion to EC and VLA-4 (CD49d) resulted in the phosphorylation of Akt, which was sensitive to inhibition by idelalisib. These findings demonstrate that idelalisib interferes with integrin-mediated CLL cell adhesion to EC and BMSC, providing a novel mechanism to explain idelalisib-induced redistribution of CLL cells from tissues into the blood

    Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity

    Get PDF
    Chimeric antigen receptors (CARs) have been used to redirect the specificity of autologous T cells against leukemia and lymphoma with promising clinical results. Extending this approach to allogeneic T cells is problematic as they carry a significant risk of graft-versus-host disease (GVHD). Natural killer (NK) cells are highly cytotoxic effectors, killing their targets in a non-antigen-specific manner without causing GVHD. Cord blood (CB) offers an attractive, allogeneic, off-the-self source of NK cells for immunotherapy. We transduced CB-derived NK cells with a retroviral vector incorporating the genes for CAR-CD19, IL-15 and inducible caspase-9-based suicide gene (iC9), and demonstrated efficient killing of CD19-expressing cell lines and primary leukemia cells in vitro, with marked prolongation of survival in a xenograft Raji lymphoma murine model. Interleukin-15 (IL-15) production by the transduced CB-NK cells critically improved their function. Moreover, iC9/CAR.19/IL-15 CB-NK cells were readily eliminated upon pharmacologic activation of the iC9 suicide gene. In conclusion, we have developed a novel approach to immunotherapy using engineered CB-derived NK cells, which are easy to produce, exhibit striking efficacy and incorporate safety measures to limit toxicity. This approach should greatly improve the logistics of delivering this therapy to large numbers of patients, a major limitation to current CAR-T-cell therapies
    • 

    corecore