15,349 research outputs found

    Bounds on Heavy-to-Heavy Mesonic Form Factors

    Get PDF
    We provide upper and lower bounds on the form factors for B -> D, D^* by utilizing inclusive heavy quark effective theory sum rules. These bounds are calculated to leading order in Lambda_QCD/m_Q and alpha_s. The O(alpha_s^2 beta_0) corrections to the bounds at zero recoil are also presented. We compare our bounds with some of the form factor models used in the literature. All the models we investigated failed to fall within the bounds for the combination of form factors (omega^2 - 1)/(4 omega)|omega h_{A2}+h_{A3}|^2.Comment: 27 pages, 10 figure

    Application of ERTS-A data to agricultural practices in the Mississippi Delta region

    Get PDF
    There are no author-identified significant results in this report

    Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor

    Get PDF
    We demonstrate an all-optical delay line in hot cesium vapor that tunably delays 275 ps input pulses up to 6.8 ns and 740 input ps pulses up to 59 ns (group index of approximately 200) with little pulse distortion. The delay is made tunable with a fast reconfiguration time (hundreds of ns) by optically pumping out of the atomic ground states.Comment: 4 pages, 6 figure

    Dynamic method to distinguish between left- and right-handed chiral molecules

    Full text link
    We study quantum systems with broken symmetry that can be modelled as cyclic three-level atoms with coexisting one- and two-photon transitions. They can be selectively optically excited to any state. As an example, we show that left- and right-handed chiral molecules starting in the same initial states can evolve into different final states by a purely dynamic transfer process. That means, left- and right-handed molecules can be distinguished purely dynamically.Comment: 4 pages, submitted to Phys. Rev.

    New Constraints on Dispersive Form Factor Parameterizations from the Timelike Region

    Get PDF
    We generalize a recent model-independent form factor parameterization derived from rigorous dispersion relations to include constraints from data in the timelike region. These constraints dictate the convergence properties of the parameterization and appear as sum rules on the parameters. We further develop a new parameterization that takes into account finiteness and asymptotic conditions on the form factor, and use it to fit to the elastic \pi electromagnetic form factor. We find that the existing world sample of timelike data gives only loose bounds on the form factor in the spacelike region, but explain how the acquisition of additional timelike data or fits to other form factors are expected to give much better results. The same parameterization is seen to fit spacelike data extremely well.Comment: 24 pages, latex (revtex), 3 eps figure

    Model-Independent Semileptonic Form Factors Using Dispersion Relations

    Full text link
    We present a method for parametrizing heavy meson semileptonic form factors using dispersion relations, and from it produce a two-parameter description of the B -> B elastic form factor. We use heavy quark symmetry to relate this function to B -> D* l nu form factors, and extract |V_cb|=0.0355^{+0.0029}_{-0.0025} from experimental data with a least squares fit. Our method eliminates model-dependent uncertainties inherent in choosing a parametrization for the extrapolation of the differential decay rate to threshold.Comment: uses lanlmac(harvmac) and epsf, 12 pages, 1 eps figure included (Talk by BG at the 6-th International Symposium on Heavy Flavour Physics, Pisa, Italy, 6--10 June, 1995

    On-chip spectroscopy with thermally-tuned high-Q photonic crystal cavities

    Full text link
    Spectroscopic methods are a sensitive way to determine the chemical composition of potentially hazardous materials. Here, we demonstrate that thermally-tuned high-Q photonic crystal cavities can be used as a compact high-resolution on-chip spectrometer. We have used such a chip-scale spectrometer to measure the absorption spectra of both acetylene and hydrogen cyanide in the 1550 nm spectral band, and show that we can discriminate between the two chemical species even though the two materials have spectral features in the same spectral region. Our results pave the way for the development of chip-size chemical sensors that can detect toxic substances

    Spatial and Temporal Hadron Correlators below and above the Chiral Phase Transition

    Get PDF
    Hadronic correlation functions at finite temperature in QCD, with four flavours of dynamical quarks, have been analyzed both above and below the chiral symmetry restoration temperature. We have used both point and extended sources for spatial as well as temporal correlators. The effect of periodic temporal boundary conditions for the valence quarks on the spatial meson correlators has also been investigated. All our results are consistent with the existence of individual quarks at high temperatures. A measurement of the residual interaction between the quarks is presented.Comment: 19 pages HLRZ 54/93, BI-TP 93/76, TIFR/TH/94-1

    Tunable pulse delay and advancement in a coupled nanomechanical resonator-superconducting microwave cavity system

    Full text link
    We theoretically study the transmission of a weak probe field under the influence of a strong pump field in a coupled nanomechanical resonator-superconducting microwave cavity system. Using the standard input-output theory, we find that both pulse delay (slow light effect) and advancement (fast light effect) of the probe field can appear in this coupled system provided that we choose the suitable detuning of the pump field from cavity resonance. The magnitude of the delay (advancement) can be tuned continuously by adjusting the power of the pump field. This technique demonstrates great potential in applications including microwave phase shifter and delay line.Comment: 12pages, 3 figure

    Composition dependence of electronic structure and optical properties of Hf1-xSixOy gate dielectrics

    Get PDF
    Copyright © 2008 American Institute of Physics. This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditionsComposition-dependent electronic structure and optical properties of Hf1−xSixOy 0.1 x 0.6 gate dielectrics on Si at 450 °C grown by UV-photo-induced chemical vapor deposition UV-CVD have been investigated via x-ray photoemission spectroscopy and spectroscopy ellipsometry SE . By means of the chemical shifts in the Hf 4f, Si 2p, and O 1s spectra, the Hf–O–Si bondings in the as-deposited films have been confirmed. Analyses of composition-dependent band alignment of Hf1−xSixOy / Si gate stacks have shown that the valence band VB offset Ev demonstrates little change; however, the values of conduction band offset Ec increase with the increase in the silicon atomic composition, resulting from the increase in the separation between oxygen 2p orbital VB state and antibonding d states intermixed of Hf and Si. Analysis by SE, based on the Tauc–Lorentz model, has indicated that decreases in the optical dielectric constant and increase in band gap have been observed as a function of silicon contents. Changes in the complex dielectric functions and band gap Eg related to the silicon concentration in the films are discussed systematically. From the band offset and band gap viewpoint, these results suggest that Hf1−xSixOy films provide sufficient tunneling barriers for electrons and holes, making them promising candidates as alternative gate dielectrics.National Natural Science Foundation of China and Royal Society U.K
    • …
    corecore