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Abstract. Hadronic correlation functions at finite temper- 
ature in QCD, with four flavours of dynamical quarks, 
have been analyzed both above and below the chiral 
symmetry restoration temperature. We have used both 
point and extended sources for spatial as well as temporal 
correlators. The effect of periodic temporal boundary con- 
ditions for the valence quarks on the spatial meson cor- 
relators has also been investigated. All our results are 
consistent with the existence of individual quarks at high 
temperatures. A measurement of the residual interaction 
between the quarks is presented. 

1 Introduction 

The spatial correlation functions of operators with had- 
ronic quantum numbers yield screening masses for static 
excitations in the QCD plasma [1]. These give informa- 
tion on the physical excitations and interactions in QCD 
at finite temperatures. Chiral symmetry restoration at 
temperatures T> T~ is signalled by the degeneracy of 
screening lengths obtained from pairs of opposite parity 
channels [1-3]. At such high temperatures, the vector (V), 
as well as the pseudovector (PV), screening mass is nearly 
twice the lowest Matsubara frequency, O=nT, whereas 
the baryon screening mass is close to thrice this value. 
This indicates that correlations in these channels are me- 
diated, respectively, by the exchange of two and three 
weakly interacting quarks [3]. 

Close to To, the scalar (S) and the pseudoscalar (PS) 
'meson' screening mass is significantly smaller than the 
V/PV screening mass, but approaches the latter when the 
temperature is raised to 2To [4]. Thus, at high temper- 
ature, this channel is also correlated through the exchange 
of two weakly interacting quarks. Nevertheless, close to 
To, such an interpretation does not seem to hold. 
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Since the lowest mass hadron is unlikely to change 
from a mesonic collective state to a quark-like quasi- 
particle at a non-critical point, a pleasantly consistent 
picture of the excitation spectrum would be obtained if, 
above To, the S/PS correlations could be shown to be due 
to the propagation of two unbound quarks, possibly still 
strongly interacting close to T c. A means of checking this 
was suggested and applied to quenched QCD [4]. This 
method also yielded measurements of effective couplings 
in different spin channels. It was seen that such a coupling 
is indeed larger in the S/PS channel than in the V/PV 
channel. In this paper we extend such studies to QCD 
with four flavours of dynamical staggered quarks. 

Hadronic correlators, and similarly the spatial Wilson 
loops [5] and spatial four point functions with point-split 
sources [6], should provide information on the non- 
perturbative long distance structure of the quark gluon 
plasma. While the spatial and temporal quark propaga- 
tors yield identical information about quark screening 
masses [7], this seems to be in conflict with recent studies 
of temporal and spatial hadron propagators [8]. In the 
latter case larger screening masses were extracted from 
temporal than from spatial correlators, although one 
would have expected to find smaller values as the lowest 
Matsubara mode is zero in this case. The determination of 
low momentum excitations from temporal propagators at 
finite temperature is, however, difficult, due to the short 
"time" extent of the lattice ( 0 < t < l / T ) .  This leads to 
a superposition of many high momentum excitations. We 
will try to clarify this situation here by projecting onto low 
momentum modes, by using wall source operators. 

Furthermore, we will study the sensitivity of the ex- 
tracted spatial screening lengths to changes of the tem- 
poral quark boundary conditions. While bosonic modes 
(bound states in mesonic operators) will not be sensitive to 
changes of the usual anti-periodic boundary conditions to 
periodic ones, fermionic modes (freely propagating 
quarks) will be sensitive to these changes. We will also 
extend the studies of scalar and vector channel couplings 
[4] to the case of QCD with dynamical fermions. 

The conclusion from these investigations is that tem- 
poral and spatial propagators yield identical information 
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on the spectrum of finite temperature QCD below and 
above the chiral phase transition. The behaviour of the 
(pseudo-)scalar screening length suggests that there are no 
bound states in this quantum number channel above T~. 

This paper is organized as follows. In Sect. 2 we intro- 
duce the observables studied, and describe their behaviour 
for free staggered fermions, i.e., in the lowest order of 
perturbation theory. Details of our measurements and the 
results are given in Sect. 3. A summary and conclusions 
are presented in Sect. 4. 

2 Spatial and thermal direction correlators 

In this section we consider correlation functions between 
operators separated either in the spatial or the thermal 
direction. They are constructed on lattices of size 
V=N~xN~ with N~>N~. Unless otherwise mentioned, 
we shall use the lattice spacing as the unit of length. The 
shorter direction introduces the temperature, via N~ = 1IT. 
Spatial and thermal direction correlation functions with 
given external meson momentum Pu are defined as 

p 1 
Gff(x3, ) = N ~ - - ~  (H(x3,$)H*(O, O) )exp(iP.s 

if 1 Gt (Xo, P ) = ~  ~ (H(xo, x)H*(O, 0)) exp(iP-x). (2.1) 

For any 4-momentum P,, we shall use the notation 15 to 
denote the 3-momentum (Po, P1, P2), and P for 
(Pa, P2, P3). Here H denotes an operator carrying mesonic 
quantum numbers. By an abuse of language, we shall call 
G~ and Gt 'meson correlators'. The name is not supposed 
to carry any prejudice about the existence or absence of 
mesons in the theory. 

In perturbation theory, these correlation functions can 
be described in terms of the exchange of two (interacting) 
fermions. We set out our notation and introduce some 
features typical of non-interacting staggered fermions be- 
low. This corresponds to the leading order, (9(9~ of 
perturbation theory. In Sect. 3 the behaviour of the meas- 
ured correlation functions will be compared with these 
features. 

2.1 Spectral representations 

Hadronic correlation functions at T=  0 are used to extract 
the mass of the lowest excitation with given quantum 
numbers. A spectral representation of correlation func- 
tions with quantum numbers H, in the form 

G11(t) = ~" Ai e-m~t, (2.2) 
i 

can be used to show that this necessitates the measure- 
ment of Gn(t) at Euclidean time separations much larger 
than the splitting between the lowest and the first excited 
states, i.e., t >;> l / (m~-  re~ In the absence of any a priori 
knowledge of this splitting, it is necessary to take as large 
a time separation as possible, and to perform checks on 
the estimate of m g so obtained. All this is well known. 

At finite temperatures the physical extent of the ther- 
mal direction, z, is bounded in physical units to z_< 1/T. 
Due to the periodicity (or anti-periodicity) imposed to 
obtain the thermal ensemble, correlation functions can be 
followed only to z_< 1/(2T). In the general case this may 
not allow the extraction of the lowest lying state in the 
manner discussed above. One then has to use either 
a complicated ansatz for the correlation function, involv- 
ing several exponentials to approximate (2.2) [83, or 
a more complicated operator which projects out only the 
low momentum modes. 

As the size of the spatial directions is not bounded in 
any way, it has become customary to study spatial rather 
than temporal correlation functions. The spatial correla- 
tion functions are the static correlations in the equilibrium 
system, and hence are also of direct physical relevance. 

For the interpretation of the correlation functions 
measured in these simulations, one must discuss the spec- 
tral density functions underlying the correlations. While 
building models of the spectral densities, it is useful to 
keep certain constraints in mind. At finite temperatures 
the heat-bath provides a preferred frame of reference. As 
a result, the momentum representation of spectral func- 
tions is given in terms of Po and [p[ separately, where 
P=(Pl, P2, P3)- Dynamical modes are defined by poles in 
the complex Po plane; and the movement of such poles 
with IP[ are the dispersion relations. In examining the 
spectral representation of the thermal and spatial direc- 
tion correlators it becomes clear that different aspects of 
the spectral function are important for each. However, 
information on the poles of spectral functions can be 
extracted from either of these correlators. 

The residue at a pole can also be used to extract 
effective couplings. These are usually defined as the 
integrals of discontinuities over cuts in the complex 
plane of either Po or IPl. Note that on any lattice 
the spectral function does not have any cuts, but 
only a set of poles. However, effective couplings can 
still be extracted via sums over the residues at the poles. 
One can expect finite lattice spacing effects to come from 
those poles which develop into a cut in the continuum 
limit. 

2.2 Point sources 

In the staggered discretization, local operators for cur- 
rents carrying mesonic quantum numbers are written in 
terms of fermion fields, )~(x), as 

H (x) = ~11(x) 2(xo, x)z(xo, x). (2.3) 

The phase factors q~n project onto definite quantum num- 
bers [9], and are listed in Table 1, for the channels ana- 
lyzed in this study. 

Since the meson operators, H(x), are composed of 
fermion operators, it is clear that even for a fixed external 
meson momentum, /~ or P, quarks with a spectrum of 
internal momenta will contribute to the correlation func- 
tions Gff and Gff. The structure of the hadronic correla- 
tion functions is, therefore, more complicated than that of 
the quark correlator [7]. 



TabLe 1. Phases for the meson operators used for G ft. For  G n s ~ 
x 3 should be replaced by x o. Also listed are kinematic factors 
appearing in the (9(g ~ perturbative calculations of the meson cor- 
relation functions in (2.4) and (2.6) 

Channel ~,(x) fo~.. fo~d 

S I m2--o.)o) ' 1 

PS ( - 1 )  ~'+~+~ rnZ +coco ' 1 
PV ( -  1 ) ~ ' + ( -  1 ) ~ + ( -  1) ~' 3 m 2 -  ~oco ' 3 
v ( -  1)x,+=,+(- 1)~,+=~+(- 1) =,+=, 3m2 + coco ' 3 

This is clear when the correlation functions at (9(g ~ 
are explicitly written out. For the spatial correlation func- 
tion the result is well known: 

Gff(x3,/6 3 24N~ )/T =N~N2 ~ fUGl(xa,p)G,q(xa,fi'). (2.4) 

The factorsf  u for even and odd sites are given in Table 1. 
The quark propagator G~ is given by: 

I sinh[E~(x3-N~/2)] 
sinh(E~N~/2) cosh E~ (x3 odd), 

Gq~(x3'fi)= cosh[E~(x3-N,~/2)] (x3 even). (2.5) 

sinh (E~ N~/2) sinh 2E~ 

The temporal correlation function is very similar: 

Gff(Xo, P)/T 3=24N? }". fUGtq(Xo,p)Gq(xo,p'), (2.6) 
N~ p 

with the quark propagator G~ q given by 

cosh [ Et(xo -- N~/2)] 
(Xo odd), cosh(EtN~/2) cosh Et 

Gq(xo,p)= (2.7) 
sinh[Et(xo -NU2)]  

(Xo even). cosh(EtN~/2) sinh 2Et 

The sums in (2.4) and (2.6) are over internal quark momen- 
ta. These run over po=(2n+l)uT and pi=2nnT, with 
i = 1, 2, 3 and n = 0, _+ 1, .... The quark and antiquark mo- 
menta, p and p' respectively, sum to give the meson 

+ ' momentum P, i.e. Pu=p, p~,. We have used the abbrevi- 
ation 

Et,~= arcsinh(cat,~), (2.8) 

along with the definitions 

3 
2 2 cat -mq + ~ sinZ(pk) and 

k = l  

2 
2 2 ca~ -mq + ~" sinZ(pk). (2.9) 

k = 0  

The variables E' and ca' are obtained by replacing p by p', 
and mq is the bare quark mass. 

Recall that the spectrum of Po starts from the lowest 
Matsubara frequency, ~2=rcT, and reflects the anti- 
periodic boundary conditions usually imposed in the ther- 
mal direction on the fermion fields when inverting the 
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Fig. 1. Thermal direction correlation functions at (9(g ~ on lattices 
with N~--, oo and various N~ values. The quark mass is mq = 0.01, and 
we define z T = x o / N , .  The result for N ~ o o  is obtained from (2.11) 

Dirac equation. All other momentum components start 
from zero. As a result, the screening mass at O(g ~ is 
independent of the meson operator H and given by [3] 

#u = 2E~ i" = 2arcsinh (mq z + sin 2 ~r'~ ). (2.10) 

The decay of G~ at x3 >> 1/T is controlled by #~. At 
shorter distances the higher modes also contribute and 
lead to a more rapid decrease of the correlation function. 
At very short distances, x3 < 1/(2T), all terms in the sums 
in (2.4) turn out to be important. 

The thermal direction correlation function, Gt n, does 
not yield extra information in perturbation theory. Since 
Xo < 1/(2T), all terms in the sum in (2.6) turn out to be 
important, and the correlation function falls very rapidly 
due to the contribution of terms with large Et and Et. This 
is shown in Fig. 1. Also shown in the same figure is the 
result obtained letting first N~ and then N~-~oo at fixed T. 
The formulae in (2.6) and (2.7) then reduce to the con- 
tinuum expressions for the correlators constructed from 
non-interacting quarks. For zero external momentum, 
P = 0 ,  and vanishing quark masses, these take on the 
simple form 

96T 3 y2 
Gt~(z, P = 0 ) = ~ T -  ~ dYco~ycosh2(y(2T'c- 1)), 

0 

(2.11) 

where y, z and T are related to the lattice variables via 
Z=xoa, zT=xo/N~ and y=Et/(2T ). Notice that, at short 
distances, one obtains Gtn(z, P = 0)~ z-3 from (2.11). (Sim- 
ilar conclusions have been reached in the continuum, 
[103.) 

Although the temporal direction is too short to single 
out the lowest excitation for T> 0, it is still instructive to 
study the behaviour of local masses, m(xo), obtained from 
Gtn. These are obtained by comparing the correlation 
functions on successive even (or odd) lattice sites, x 0 _+ 1. 
One then solves 

GtH(Xo-- 1, O) cosh[m(xo)(Xo-- 1 -N,/2)l 
(2.12) G~(xo+ 1, O) cosh[m(xo)(Xo+ 1-N~/2)] 
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Fig. 2. Scaled local masses at @(gO), rn(z)z, versus the scaled separ- 
ation zT= xo/N~, obtained from (2.6) and (2.7) for N ~  c~ for N~ = 16 
(dashed line) and 32 (dotted line). The full line shows the result for 
N,= oe (2.11). The filled square shows the result for m('c=O.25/T) on 
an 8 x 163 lattice 

for m(xo). The left hand side is obtained from either 
a measured or perturbatively calculated correlation func- 
tion. One then assumes on the right hand side that the 
correlation function can be described by an ordinary 
meson correlator consisting of a single cosh. (For the 
simple case of non-interacting quarks we know, of course, 
that we should rather use the sum over squares of quark 
correlators applicable to the given source and sink.) A feel- 
ing for this local mass may be obtained by noting that in 
the limit N ~  oe, at fixed T(i.e., a~0) ,  (2.11) can be used to 
show that 

m(xo)xo=m('c)'c~-3 (N,>> Xo>>O). (2.13) 

Analytic results for the local masses at (9(9 ~ in per- 
turbation theory are shown in Fig. 2. Note that, in prac- 
tice, m(z)z remains close to 3 for all values of zT. The rise 
of the local meson mass at short distances, when extracted 
in this fashion, reflects the increasing importance of higher 
momentum excitations. We note that even for the largest 
possible separation, Xo =N~/2, or equivalently z =  1/(2T), 
the local mass remains large in units of the temperature, 
m/T~6. The result for z =  1/(4T), obtained on an 8 x 16 3 
lattice, is also shown in the figure. This is the only value of 

which we will be able to study numerically. 
As a concluding remark to this section, let us point out 

a distinctive feature of a meson propagator consisting of 
non-interacting quarks, Gff(Xo), namely the strong oscilla- 
tion between even and odd sites visible in Fig. 1. This is 
seen for any non-zero lattice spacing (finite N,), and per- 
sists in higher orders of perturbation theory. Such oscilla- 
tory behaviour is also seen in the spatial correlation func- 
tions in perturbation theory. In the low-temperature 
phase of QCD, however, where one has a genuine bound 
state, the correlator does not show such a behaviour. 

2.3 Wall sources 

From the previous discussion we conclude that the analy- 
sis of the correlation functions (and especially the 

temporal correlation functions) between local hadronic 
operators is complicated, owing to the momentum sums 
in (2.4) and (2.6). A determination of the low momentum 
excitations through local masses or fits with a few ex- 
ponentials seems to be difficult, as all higher energy levels, 
coming from higher quark momenta, contribute. 

The contributions from higher quark momenta can be 
suppressed by the judicious choice of a wall source, which 
creates quarks with only the lowest allowed momentum. 
For  correlations measured in the thermal direction, the 
boundary conditions on the transverse slice are periodic. 
In this case one can project onto zero quark momentum 
via the meson sources 

8 
Hwall(Xo, x)=~3a3 Z ~)H(x)z( XO, x +e)x(Xo, x +e'). (2.14) 

e, e t 
even 

For correlators measured in the spatial direction, the 
antiperiodic boundary condition in the thermal direction 
means that one cannot project onto zero momentum. 
Instead a projection onto the Matsubara momentum 
~ = ( n T ,  0, 0) must be used: 

8 
Hn(Xa)=N2N, ~,  49H(2)]~(X3, 2+~)Z(X3, 2 + U )  

even 

• exp( i (~-  ~'). ~). (2.15) 

The correlation functions are measured between a wall 
source and a point sink, with a sum over all sinks in the 
plane transverse to the direction of propagation. 

The (9(gO) perturbative calculation in eqs. (2.4) and 
(2.6) is simplified if the only contribution is from quarks 
with momentum p = 0 or p = ~. For  example, the tempo- 
ral correlator becomes the square of a single quark propa- 
gator, 

GH'walI(x0, 0)/T 3= 3(N~3/N~)fUGt~(Xo, O)G~(xo, 0). (2.16) 

The biggest gain in using extended sources is obtained for 
the thermal direction correlation functions. At (9(go) in 
perturbation theory the masses are then given by 

m wall = 2 arcsinh (mq). (2.17) 

Local masses can then be extracted by using (2.12). We 
note that at (9(g ~ the meson correlator now has the 
form cosh2(mq(xo-NJ2)), which is well fitted by 
a cosh(2m~,(xo-N~/2)) over most of the temporal range. 

At (9(g ~ in perturbation theory the local masses thus 
measure the mass of the lowest excitation. At higher 
orders this is modified due to diagrams which can be 
separated into thermal corrections to each of the quark 
propagators and interactions between the propagating 
quark and antiquark. Each of these effects begins at 
(9(gT). If the effective interaction between the two quarks 
can be neglected, as we expect for the V channel, then the 
effect of interactions can be wholly subsumed into replac- 
ing the quark mass mq in (2.17) by the thermal quark mass, 
m~ el. This was extracted from the temporal quark correla- 
tor in [7] using the same configurations used here. It is not 
unrealistic to hope that such a result may hold beyond 
perturbation theory as well. 



2.4 Varying boundary conditions 

In our attempt to clarify the nature of the excitations in 
the plasma we have also varied the temporal boundary 
condition on the valence fermion fields from which the 
meson operators are constructed. The boundary condi- 
tions of the sea quarks, driving the generation of the gauge 
field ensemble, have been left untouched. This should give 
a direct view of the nature of excitations in the plasma. 

If the lowest excitation in a channel of fixed quantum 
numbers consists of a meson, then the spectral representa- 
tion contains a pole. Thus, we are assured that this state 
will be seen in the correlation of generic operators with 
these quantum numbers.  In particular, whether we use 
periodic or anti-periodic boundary conditions on the fer- 
mion source, the lowest mass obtained from the correla- 
tion functions must be the same. The correlation functions 
should thus show little dependence on the choice of 
boundary conditions. 

However, if a given quantum number can only be 
obtained by exchanging more than one particle, then the 
spectral representation contains a cut. If the exchanged 
particles are fermions, then the contribution to the cor- 
relation function depends on the boundary conditions. In 
fact, at 6(g~ it is easy to see that (2.4)and (2.5), which 
define the spatial correlation functions, depend on the 
temporal boundary conditions via the spectrum of 
Po alone. For  periodic boundary conditions in the thermal 
direction, the allowed values are po=2nnT with 
n = {0, 1,... }, which yields a screening mass equal to 

p = 2E mi" = 2 arcsinh (mq). (2.18) 

The qualitative change in going from anti-periodic to 
periodic boundary conditions in the thermal direction is 
thus expected to be significant, and should show up in the 
correlation functions. Interactions will modify this in the 
same way as discussed above. 

2.5 Effective inter-quark couplings 

One may use the meson propagators to calculate an 
effective four fermion coupling as used in, for example, the 
Nambu-Jona-Lasinio model [11]. The propagator at 
zero four-momentum is equal to the generalised suscepti- 
bility [4], 

)A,p = G~,p(0). (2.19) 

Letting ~o o G~,o(0) = Z~,p be the susceptibility for non-interac- 
ting quarks in the pion and rho channels respectively, one 
obtains from the Dyson equation the result: 

0 
ZTt,p 

(2.20) 
X~,p - 1 - g~,p X~~ ' 

where g=,p/2 is the four fermion coupling in the effective 
Lagrangian, following the convention of [11]. 

Solving for g=,p one obtains: 

O~'pT2=N~2 \X=,o Z~,p} 5 , (2 .21 ) 
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where the susceptibility extrapolated to zero quark mass 
is used.* 

3 Results 

In this section we describe the results of our measurements 
on configurations generated by the MTc collaboration on 
lattices of size 8 x 163 with 4 flavours of dynamical fer- 
mions having a bare mass mqa=0.01. Recall that the 
phase transition was observed at a coupling of /3= 5.15(5) 
[12]. At this coupling we have two sets of configurations. 
The set labelled B corresponds to a run which started in 
the low-temperature (chiral symmetry broken) phase and 
remained there. The set labelled S was started in the 
high-temperature (chirally symmetric) phase and did not 
tunnel into the other phase. The couplings/3= 5.1 and 5.2 
cover the temperature range TITs-- 1 ___0.2. 

Results are presented for both point sources and wall 
sources. For  the wall sources we have fixed the configura- 
tions to the Coulomb gauge in the hyperplane containing 
the source, transverse to the direction of propagation. 

We have around twenty configurations at each value 
of the coupling, with four sources per configuration for 
point sources, and one for wall sources. In calculating the 
errors for the point sources we first blocked the four 
sources. The errors quoted reflect the statistical fluctu- 
ations alone. 

3.1 Thermal direction point source correlators 

The measured values of G, n are shown in Fig. 3. Note that 
the psuedoscalar correlator for T<Tc is very well 
described by an hyperbolic cosine. A changeover to the 
oscillatory behaviour characteristic of free fermions, as 
discussed in the previous section, is visible in our thermal 
correlation functions as the critical coupling, tic = 5.15, is 
crossed. This change in behaviour is most noticeable when 
wall sources are used. Note also that the oscillation 
between even and odd sites is enhanced in the vector 
channel. This is in accordance with the perturbative calcu- 
lation, and is due to the fact that f v  > fe s  (see Table 1). 

In Fig. 4 we show the local masses at distance 
z = 0.25/T extracted from the V and PS correlation func- 
tions using (2.12), (and hence the implied ansatz,) in the 
thermal direction. These are also listed in Table 2. We find 
that the local mass in the V channel is close to the 
perturbative value, mv=94/T (see Fig. 2). However, the 
local mass in the PS channel approaches this value rather 
slowly with increasing temperature. Such a behaviour is 
very similar to that of the screening masses extracted from 
spatial correlation functions. 

These local masses are similar in magnitude to the 
screening masses. This is accidental. It is due to the fact 
that for N~=8, N~= 16 we can only extract a local tem- 
poral mass at z T =  1/4. In a free fermion theory on this size 
lattice we find that the local mass at this distance is about 

*The corresponding formula (19) given in [4], contains a minor 
error in the normalization 
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Fig. 4. Local masses m~ (=p~ at distance zT= 1/4 from thermal 
direction V (squares) and PS (circles) correlation functions using 
point sources, shown as a function of ft. Also shown is the corres- 
ponding result computed in a theory of non-interacting fermions on 
an 8 x 163 lattice at the same r (full line) 

T a b l e  2. Local masses from thermal direction V and PS correlation 
functions at distance T= 1/(4T). Results obtained from point and 
wall source operators are shown. For comparison we also list twice 
the effective quark mass [7] 

point point wall wall 2m~ff  
fl me s mv rnps mv 

5.1 0.24(5) 1.5(2) 0.9(1) 
5.15(B) 0.36(7) 1.2(1) 0.6(1) 
5.15(S) 0.46(6) 1.19(9) 0.29(1) 0.56(1) 0.42(6) 
5.2 0.51(6) 1.08(8) 0 .31(1)  0.493(5) 0.38(4) 
5.3 0.64(4) 1.13(6) 0.303(6) 0.401(5) 0.19(9) 
6.5 0.98(2) 1.13(3) 0.0838(4) 0 .106(2)  0.044(8) 

3.2 Thermal direction wall source correlators 

Local  masses have similarly been extracted f rom the tem- 
poral  wall source correlators.  The results obta ined  for 
m w"11 are also collected in Table  2. We note  that  these 
masses  are indeed much  smaller than the local masses 
obta ined  using point  sources. The  project ion on to  the 
lowest m o m e n t u m  excitat ion with these correlat ion func- 
tions thus seems to be ra ther  efficient. 

The relat ion in (2.17) seems to hold, at least quali tat-  
ively, for bo th  the vector  and the pseudo-scalar  channels, 
when the effective quark  mass  m~ ff given in [7] is used for 
the quark  mass.  The  masses in the PS channel close to 
//c are smaller  than  those in the vector  channel,  indicating 
s t rong residual interact ions between fermions. The  PS 
masses  then app roach  the mass  in the vector  channel  as 
the coupl ing increases. 

We also note  that  the vector  mass  remains larger than  
2m~ if, indicating the impor tance  of the remaining inter- 
quark  interactions.  One  m a y  try to parametr ize  these 
residual interact ions in a potent ial  model  relating the 
difference in the pion and rho masses to different spin-spin 
interact ions in these q u a n t u m  number  channels. The  
masses then receive contr ibut ions  f rom the effective quark  
masses,  as well as the scalar (Escalar) and spin dependent  
(Espin) par t  of  the q u a r k - a n t i - q u a r k  potential:  

ff 3 
mes=2m~ + Esealar-- ~ Espin, (3.1) 

1 
mv = 2m~ ff -q- Esealar q- ~ Espin �9 (3.2) 

We find tha t  the meson  masses can then be paramet r ized  
by a scalar te rm that  is consistent with zero, and a spin 
te rm approx imate ly  equal to the effective quark  mass,  and 
with the same tempera tu re  dependence.  

10T. This just  happens  to be cIose to the meson  screening 
mass  in free fermion theory  on this size lattice, 9T. When  
the lattice size is changed, this accidental  concordance  is 
r emoved  (see (2.13)). 

3.3 Anti-periodic and periodic boundary conditions 

In Fig. 6a and  b G~ s and G v are shown for T <  T~ for bo th  
periodic (per) Fig. 6a and anti-periodic (aper) Fig. 6b 
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Fig. 5. Local m a s s e s  m w(=wall)  from correlators constructed with 
wall sources in the PS (circles) and V (squares) channels in the high 
temperature phase. Also shown is 2m~ ff (triangles) from [7]. Lines 
have been drawn to guide the eye 

boundary conditions in the thermal direction. The cor- 
relation functions are unaffected by this change, and the 
screening masses, shown in Table 3, do not change within 
errors. Thus, these masses reflect bosonic poles in the 
spectral function. 

In contrast, there is a remarkable difference between 
the correlation functions obtained for periodic and anti- 
periodic boundary conditions for T> T~, as shown in 
Fig. 6c and d. The correlation functions become much 
flatter when the boundary conditions are periodic, and the 
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Table 3. Screening masses in the PS and V channels for both 
anti-periodic (aper) and periodic (per) boundary conditions in the 
thermal direction. In the chirally symmetric phase results obtained 
with wall source operators (W) are also quoted. The screening mass 
expected for this size lattice, using non-interacting quarks, is 
2roT= 1.2 for point sources and 2~T= 1.0 for wall sources 

per fl ~ p p e r  ~pps r ]~per ~2V 

5.1 0.300(2) 0 .296(4)  1.07(2) 1.07(1) 
5.15(B) 0 .296(7)  0 .301(5)  1.15(1) 0.84(5) 
5.15(S) 0 .394(6 )  0 .299(7)  0 .947(7)  0.68(3) 
5.15(SW) 0.270(3) 0.552(3) 
5.2 0.469(7) 0 .294(8)  0.979(10) 0.548(18) 
5.2(W) 0.259(3) 0.463 (3) 
5.3 0.578(5) 0 .264(6)  1 .048(9)  0.456(18) 
5.3(W) 0 .553(4 )  0 .218(5)  0 .820(2)  0.337(6) 
6.5 0.899(3) 0 .112(9)  1 .101(3)  0.113(21) 

screening mass drops in both the PS and V channels. 
Varying the boundary conditions thus suggests the ab- 
sence of genuine mesons in the high temperature phase of 
QCD.  

It  can be seen that  the vector screening mass pu TM 

closely satisfies the relation in (2.18), when the quark  mass 
is taken to be the non-perturbat ive quark  mass measured 
at the same coupling [-73. Thus, the effects of interactions, 
in this angular m o m e n t u m  channel, can be almost  entirely 
lumped into the effective quark  mass. (This relation also 
holds below the transition, and gives a definition of the 
consti tuent quark  mass.) As is already known [4], this 
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Fig. 6a-d. G ff in the PS (circles) and 
V (squares) channels. Figures a and 
b correspond to/? = 5.1, while figures e and 
d correspond to p = 5.3. The valence 
quarks have anti-periodic boundary 
conditions in the thermal direction for 
a and e, with b and d having periodic 
boundary conditions in the thermal 
direction. The masses shown were 
obtained from fits 
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tions. Shown is the rho (squares) and pion (circles) screening mass, 
extracted in both cases from fits to the correlator on even sites. Also 
shown is twice the effective quark mass (triangles) determined on the 
same gauge field configurations in the Landau gauge I-7]. Lines are 
drawn to guide the eye 

Table 4. Effective four fermion couplings for the pion (g,O and rho 
(9p) in the limit of zero quark mass. The susceptibilities for non- 
interacting quarks are: 1/~ ~ =0.5478 and 1/Z ~ =0.3680 

fl g,T z goT 2 

5.15(S) 0 .00795(6 )  0.00184(10) 
5.2 0.00785(8) 0.00189(11) 
5.3 0.0074(1) 0.00184(15) 
6.5 0.005(8) 0.0010(4) 

simplification does not hold in the PS channel, and an 
effective interaction between quarks remains. The value of 

per #es is accordingly somewhat smaller than per /~V �9 
In Table 3 and Fig. 7 results for screening masses from 

the wall source operators (2.15) are presented. These are 
a little smaller than those obtained from point source oper- 
ators, which indicates that the spatial direction is not large 
enough to eliminate higher terms in the sum in (2.4). Presum- 
ably, slightly larger spatial lattices would be required for this. 
Experience from [-4] shows that spatial sizes N~ ~ 4N, gener- 
ally suffice to eliminate the effect of the higher modes. 

The values of #per are similar to the values of local 
masses extracted from wall source operators in the ther- 
mal direction. This is indeed to be expected in perturba- 
tion theory. At (9(9 o ) these two masses should be the same, 
while differences can arise at higher orders in 9. Thus, in the 
limit mq~0, both these quantities are sensitive to O(9T) 
thermal corrections. The screening masses in Fig. 7 may 
be compared with the wall source results shown in Fig. 5. 

3.4 Effective inter-quark couplings 

The effective four fermion coupling, defined in (2.21), 
is presented in Table 4. Notice that the coupling in the 
pion channel is about  four times stronger than that in the 
rho channel also found in [14-], supporting the hypothesis 
that the difference between the pion and rho screening 
masses lies in different interaction strengths between the 

quarks in the two channels. The numbers obtained at the 
transition are also comparable with those obtained in the 
quenched approximation [4]. 

Taking the transition temperature to be To = 0.14 GeV 
[13] the following physical values for the couplings in the 
chirally symmetric phase at the transition are obtained: 
g~=0.41 GeV -2 and gp=0.094 GeV -2. These numbers 
may be compared with the values quoted in [11], ob- 
tained from fits to the experimental meson data at T =  0: 
9~=4.90 GeV -2 and 9o=3.25 GeV -2. The couplings at 
high temperature are well below the critical coupling at 
which the Nambu-Jona-Las in io  model first shows chiral 
symmetry breaking, and provide a further indication that 
neither channel has a low lying bound state. 

4 Conclusions 

The pion and rho correlators are, above the phase 
transition, sensitive to both the boundary conditions and 
the type of source used. This is not seen below the phase 
transition. Since the changes in the correlator are of the 
form one expects if unbound fermions play a direct role in 
the spectral function, this provides evidence for the exist- 
ence of a two ferrnion cut dominating the spectral function. 

Above the phase transition the screening masses in 
both the PS and vector channels are consistent with twice 
the effective quark mass plus some residual interactions. 
As a measure of this interaction, and hence as a summary 
of the relevant physics of the system, we extracted an 
effective four fermion coupling. This was four times stron- 
ger for the PS channel than it was for the vector channel, 
and an order of magnitude smaller than the couplings 
used in Nambu-Jona-Las in io  models at zero temperature. 

The structure of correlators in the vector channel 
above T~ generally agrees quite well with the behaviour 
expected from leading order perturbation theory; how- 
ever, this is not the case for the pseudo-vector channel 
below 2To. Here the correlators and masses are seen to 
approach the perturbation limit rather slowly. 

One is left with a consistent picture of a plasma phase 
consisting of deconfined, but strongly interacting quarks 
and gluons in the temperature range from T~ to 2To. 
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