4,717 research outputs found

    Gravitational Collapse in One Dimension

    Full text link
    We simulate the evolution of one-dimensional gravitating collisionless systems from non- equilibrium initial conditions, similar to the conditions that lead to the formation of dark- matter halos in three dimensions. As in the case of 3D halo formation we find that initially cold, nearly homogeneous particle distributions collapse to approach a final equilibrium state with a universal density profile. At small radii, this attractor exhibits a power-law behavior in density, {\rho}(x) \propto |x|^(-{\gamma}_crit), {\gamma}_crit \simeq 0.47, slightly but significantly shallower than the value {\gamma} = 1/2 suggested previously. This state develops from the initial conditions through a process of phase mixing and violent relaxation. This process preserves the energy ranks of particles. By warming the initial conditions, we illustrate a cross-over from this power-law final state to a final state containing a homogeneous core. We further show that inhomogeneous but cold power-law initial conditions, with initial exponent {\gamma}_i > {\gamma}_crit, do not evolve toward the attractor but reach a final state that retains their original power-law behavior in the interior of the profile, indicating a bifurcation in the final state as a function of the initial exponent. Our results rely on a high-fidelity event-driven simulation technique.Comment: 14 Pages, 13 Figures. Submitted to MNRA

    The Epsilon Calculus and Herbrand Complexity

    Get PDF
    Hilbert's epsilon-calculus is based on an extension of the language of predicate logic by a term-forming operator ϵx\epsilon_{x}. Two fundamental results about the epsilon-calculus, the first and second epsilon theorem, play a role similar to that which the cut-elimination theorem plays in sequent calculus. In particular, Herbrand's Theorem is a consequence of the epsilon theorems. The paper investigates the epsilon theorems and the complexity of the elimination procedure underlying their proof, as well as the length of Herbrand disjunctions of existential theorems obtained by this elimination procedure.Comment: 23 p

    Measurement of the magnetic properties of the Ferroxcube 8C12m material

    Get PDF

    From AMANDA to IceCube

    Full text link
    The first string of the neoteric high energy neutrino telescope IceCube successfully began operating in January 2005. It is anticipated that upon completion the new detector will vastly increase the sensitivity and extend the reach of AMANDA to higher energies. A discussion of the IceCube's discovery potential for extra-terrestrial neutrinos, together with the prospects of new physics derived from the ongoing AMANDA research will be the focus of this paper. Preliminary results of the first antarctic high energy neutrino telescope AMANDA searching in the muon neutrino channel for localized and diffuse excess of extra-terrestrial neutrinos will be reviewed using data collected between 2000 and 2003. Neutrino flux limits obtained with the all-flavor dedicated UHE and cascade analyses will be described. A first neutrino spectrum above one TeV in agreement with atmospheric neutrino flux expectations and no extra-terrestrial contribution will be presented, followed by a discussion of a limit for neutralino CDM candidates annihilating in the center of the Sun.Comment: 15 pages, 8 figures Invited talk contribution at 5th International Conference on Non-accelerator New Physics (NANP 05), Dubna, Russia, 20-25 Jun 200

    The Origin of the Extragalactic Gamma-Ray Background and Implications for Dark-Matter Annihilation

    Full text link
    The origin of the extragalactic γ\gamma-ray background (EGB) has been debated for some time. { The EGB comprises the γ\gamma-ray emission from resolved and unresolved extragalactic sources, such as blazars, star-forming galaxies and radio galaxies, as well as radiation from truly diffuse processes.} This letter focuses on the blazar source class, the most numerous detected population, and presents an updated luminosity function and spectral energy distribution model consistent with the blazar observations performed by the {\it Fermi} Large Area Telescope (LAT). We show that blazars account for 5011+12^{+12}_{-11}\,\% of the EGB photons (>>0.1\,GeV), and that {\it Fermi}-LAT has already resolved \sim70\,\% of this contribution. Blazars, and in particular low-luminosity hard-spectrum nearby sources like BL Lacs, are responsible for most of the EGB emission above 100\,GeV. We find that the extragalactic background light, which attenuates blazars' high-energy emission, is responsible for the high-energy cut-off observed in the EGB spectrum. Finally, we show that blazars, star-forming galaxies and radio galaxies can naturally account for the amplitude and spectral shape of the background in the 0.1--820\,GeV range, leaving only modest room for other contributions. This allows us to set competitive constraints on the dark-matter annihilation cross section.Comment: On behalf of the Fermi-LAT collaboration. Contact authors: M. Ajello, D. Gasparrini, M. Sanchez-Conde, G. Zaharijas, M. Gustafsson. Accepted for publication on ApJ

    Direct mass measurements beyond the proton drip-line

    Get PDF
    First on-line mass measurements were performed at the SHIPTRAP Penning trap mass spectrometer. The masses of 18 neutron-deficient isotopes in the terbium-to-thulium region produced in fusion-evaporation reactions were determined with relative uncertainties of about 71087\cdot 10^{-8}, nine of them for the first time. Four nuclides (144,145^{144, 145}Ho and 147,148^{147, 148}Tm) were found to be proton-unbound. The implication of the results on the location of the proton drip-line is discussed by analyzing the one-proton separation energies

    Mass measurements of very neutron-deficient Mo and Tc isotopes and their impact on rp process nucleosynthesis

    Get PDF
    The masses of ten proton-rich nuclides, including the N=Z+1 nuclides 85-Mo and 87-Tc, were measured with the Penning trap mass spectrometer SHIPTRAP. Compared to the Atomic Mass Evaluation 2003 a systematic shift of the mass surface by up to 1.6 MeV is observed causing significant abundance changes of the ashes of astrophysical X-ray bursts. Surprisingly low alpha-separation energies for neutron-deficient Mo and Tc are found, making the formation of a ZrNb cycle in the rp process possible. Such a cycle would impose an upper temperature limit for the synthesis of elements beyond Nb in the rp process.Comment: Link to online abstract: http://link.aps.org/doi/10.1103/PhysRevLett.106.12250

    Electrostatics and the Assembly of an RNA Virus

    Full text link
    Electrostatic interactions play a central role in the assembly of single-stranded RNA viruses. Under physiological conditions of salinity and acidity, virus capsid assembly requires the presence of genomic material that is oppositely charged to the core proteins. In this paper we apply basic polymer physics and statistical mechanics methods to the self-assembly of a synthetic virus encapsidating generic polyelectrolyte molecules. We find that (i) the mean concentration of the encapsidated polyelectrolyte material depends on the surface charge density, the radius of the capsid, and the linear charge density of the polymer but neither on the salt concentration or the Kuhn length, (ii) the total charge of the capsid interior is equal but opposite to that of the empty capsid, a form of charge reversal. Unlike natural viruses, synthetic viruses are predicted not to be under an osmotic swelling pressure. The design condition that self-assembly only produces filled capsids is shown to coincide with the condition that the capsid surface charge exceeds the desorption threshold of polymer surface adsorption. We compare our results with studies on the self-assembly of both synthetic and natural viruses.Comment: 41 pages, 4 figure

    Gamma Lines without a Continuum: Thermal Models for the Fermi-LAT 130 GeV Gamma Line

    Get PDF
    Recent claims of a line in the Fermi-LAT photon spectrum at 130 GeV are suggestive of dark matter annihilation in the galactic center and other dark matter-dominated regions. If the Fermi feature is indeed due to dark matter annihilation, the best-fit line cross-section, together with the lack of any corresponding excess in continuum photons, poses an interesting puzzle for models of thermal dark matter: the line cross-section is too large to be generated radiatively from open Standard Model annihilation modes, and too small to provide efficient dark matter annihilation in the early universe. We discuss two mechanisms to solve this puzzle and illustrate each with a simple reference model in which the dominant dark matter annihilation channel is photonic final states. The first mechanism we employ is resonant annihilation, which enhances the annihilation cross-section during freezeout and allows for a sufficiently large present-day annihilation cross section. Second, we consider cascade annihilation, with a hierarchy between p-wave and s-wave processes. Both mechanisms require mass near-degeneracies and predict states with masses closely related to the dark matter mass; resonant freezeout in addition requires new charged particles at the TeV scale.Comment: 17 pages, 8 figure

    Majorana: from atomic and molecular, to nuclear physics

    Get PDF
    In the centennial of Ettore Majorana's birth (1906-1938?), we re-examine some aspects of his fundamental scientific production in atomic and molecular physics, including a not well known short communication. There, Majorana critically discusses Fermi's solution of the celebrated Thomas-Fermi equation for electron screening in atoms and positive ions. We argue that some of Majorana's seminal contributions in molecular physics already prelude to the idea of exchange interactions (or Heisenberg-Majorana forces) in his later workson theoretical nuclear physics. In all his papers, he tended to emphasize the symmetries at the basis of a physical problem, as well as the limitations, rather than the advantages, of the approximations of the method employed.Comment: to appear in Found. Phy
    corecore