Hilbert's epsilon-calculus is based on an extension of the language of
predicate logic by a term-forming operator ϵx. Two fundamental
results about the epsilon-calculus, the first and second epsilon theorem, play
a role similar to that which the cut-elimination theorem plays in sequent
calculus. In particular, Herbrand's Theorem is a consequence of the epsilon
theorems. The paper investigates the epsilon theorems and the complexity of the
elimination procedure underlying their proof, as well as the length of Herbrand
disjunctions of existential theorems obtained by this elimination procedure.Comment: 23 p