research

The Epsilon Calculus and Herbrand Complexity

Abstract

Hilbert's epsilon-calculus is based on an extension of the language of predicate logic by a term-forming operator ϵx\epsilon_{x}. Two fundamental results about the epsilon-calculus, the first and second epsilon theorem, play a role similar to that which the cut-elimination theorem plays in sequent calculus. In particular, Herbrand's Theorem is a consequence of the epsilon theorems. The paper investigates the epsilon theorems and the complexity of the elimination procedure underlying their proof, as well as the length of Herbrand disjunctions of existential theorems obtained by this elimination procedure.Comment: 23 p

    Similar works