589 research outputs found

    Simulation of the Spherically Symmetric Stellar Core Collapse, Bounce, and Postbounce Evolution of a 13 Solar Mass Star with Boltzmann Neutrino Transport, and Its Implications for the Supernova Mechanism

    Full text link
    With exact three-flavor Boltzmann neutrino transport, we simulate the stellar core collapse, bounce, and postbounce evolution of a 13 solar mass star in spherical symmetry, the Newtonian limit, without invoking convection. In the absence of convection, prior spherically symmetric models, which implemented approximations to Boltzmann transport, failed to produce explosions. We are motivated to consider exact transport to determine if these failures were due to the transport approximations made and to answer remaining fundamental questions in supernova theory. The model presented here is the first in a sequence of models beginning with different progenitors. In this model, a supernova explosion is not obtained. We discuss the ramifications of our results for the supernova mechanism.Comment: 5 pages, 3 figures, Submitted to Physical Review Letter

    Molecular origin of the anisotropic dye orientation in emissive layers of organic light emitting diodes

    Get PDF
    Molecular orientation anisotropy of the emitter molecules used in organic light emitting diodes (OLEDs) can give rise to an enhanced light-outcoupling efficiency, when their transition dipole moments are oriented preferentially parallel to the substrate, and to a modified internal quantum efficiency, when their static dipole moments give rise to a locally modified internal electric field. Here, the orientation anisotropy of state-of-the-art phosphorescent dye molecules is investigated using a simulation approach which mimics the physical vapor deposition process of amorphous thin films. The simulations reveal for all studied systems significant orientation anisotropy. Various types are found, including a preference of the static dipole moments to a certain direction or axis. However, only few systems show an improved outcoupling efficiency. The outcoupling efficiency predicted by the simulations agrees with experimentally reported values. The simulations reveal in some cases a significant effect of the host molecules, and suggest that the driving force of molecular orientation lies in the molecule-specific van der Waals interactions of the dye molecule within the thin film surface. The electrostatic dipole-dipole interaction slightly reduces the anisotropy. These findings can be used for the future design of improved dye molecules.</p

    NASA-JSC antenna near-field measurement system

    Get PDF
    Work was completed on the near-field range control software. The capabilities of the data processing software were expanded with the addition of probe compensation. In addition, the user can process the measured data from the same computer terminal used for range control. The design of the laser metrology system was completed. It provides precise measruement of probe location during near-field measurements as well as position data for control of the translation beam and probe cart. A near-field range measurement system was designed, fabricated, and tested

    Strain measurement at the knee ligament insertion sites

    Get PDF
    We describe the modification of an existing method of ligament strain measurement at the knee joint in detail. At ten fresh joint specimens we used that technique where strain gauges are attached to the ligamentous insertions and origins. We both improved the preparation of the attachment site and the application of the strain gauges. In a special apparatus the specimens were moved from 0degrees extension to 100degrees flexion while simulating muscle strength and axial force. Testing was performed at the posterior cruciate ligament with both intact and transsected anterior cruciate ligament. In contrast to other existing techniques it does not affect the motion of the joint or the integrity and the function of the ligaments. Unlike the original description of that method we could register a loading behaviour of the posterior cruciate ligament that is similar to those reported in the literature

    Potentially Diagnostic Electron Paramagnetic Resonance Spectra Elucidate the Underlying Mechanism of Mitochondrial Dysfunction in the Deoxyguanosine Kinase Deficient Rat Model of a Genetic Mitochondrial DNA Depletion Syndrome

    Get PDF
    A novel rat model for a well-characterized human mitochondrial disease, mitochondrial DNA depletion syndrome with associated deoxyguanosine kinase (DGUOK) deficiency, is described. The rat model recapitulates the pathologic and biochemical signatures of the human disease. The application of electron paramagnetic (spin) resonance (EPR) spectroscopy to the identification and characterization of respiratory chain abnormalities in the mitochondria from freshly frozen tissue of the mitochondrial disease model rat is introduced. EPR is shown to be a sensitive technique for detecting mitochondrial functional abnormalities in situ and, here, is particularly useful in characterizing the redox state changes and oxidative stress that can result from depressed expression and/or diminished specific activity of the distinct respiratory chain complexes. As EPR requires no sample preparation or non-physiological reagents, it provides information on the status of the mitochondrion as it was in the functioning state. On its own, this information is of use in identifying respiratory chain dysfunction; in conjunction with other techniques, the information from EPR shows how the respiratory chain is affected at the molecular level by the dysfunction. It is proposed that EPR has a role in mechanistic pathophysiological studies of mitochondrial disease and could be used to study the impact of new treatment modalities or as an additional diagnostic tool
    corecore