5,956 research outputs found

    B Physics at the Tevatron: Run II and Beyond

    Full text link
    This report provides a comprehensive overview of the prospects for B physics at the Tevatron. The work was carried out during a series of workshops starting in September 1999. There were four working groups: 1) CP Violation, 2) Rare and Semileptonic Decays, 3) Mixing and Lifetimes, 4) Production, Fragmentation and Spectroscopy. The report also includes introductory chapters on theoretical and experimental tools emphasizing aspects of B physics specific to hadron colliders, as well as overviews of the CDF, D0, and BTeV detectors, and a Summary.Comment: 583 pages. Further information on the workshops, including transparencies, can be found at the workshop's homepage: http://www-theory.lbl.gov/Brun2/. The report is also available in 2-up http://www-theory.lbl.gov/Brun2/report/report2.ps.gz or chapter-by-chapter http://www-theory.lbl.gov/Brun2/report

    Search for CP Violation in the decays D+ -> K_S pi+ and D+ -> K_S K+

    Full text link
    A high statistics sample of photo-produced charm from the FOCUS(E831) experiment at Fermilab has been used to search for direct CP violation in the decays D+->K_S pi+ and D+ -> K_S K+. We have measured the following asymmetry parameters relative to D+->K-pi+pi+: A_CP(K_S pi+) = (-1.6 +/- 1.5 +/- 0.9)%, A_CP(K_S K+) = (+6.9 +/- 6.0 +/- 1.5)% and A_CP(K_S K+) = (+7.1 +/- 6.1 +/- 1.2)% relative to D+->K_S pi+. The first errors quoted are statistical and the second are systematic. We also measure the relative branching ratios: \Gamma(D+->\bar{K0}pi+)/\Gamma(D+->K-pi+pi+) = (30.60 +/- 0.46 +/- 0.32)%, \Gamma(D+->\bar{K0}K+)/\Gamma(D+->K-pi+pi+) = (6.04 +/- 0.35 +/- 0.30)% and \Gamma(D+->\bar{K0}K+)/\Gamma(D+->\bar{K0}pi+) = (19.96 +/- 1.19 +/- 0.96)%.Comment: 4 pages, 3 figure

    A High Statistics Measurement of the Lambdac+ Lifetime

    Full text link
    A high statistics measurement of the Lambdac+ lifetime from the Fermilab fixed-target FOCUS photoproduction experiment is presented. We describe the analysis technique with particular attention to the determination of the systematic uncertainty. The measured value of 204.6 +/- 3.4 (stat.) +/- 2.5 (syst.) fs from 8034 +/- 122 Lambdac -> pKpi decays represents a significant improvement over the present world average.Comment: Submitted to Physical Review Letter

    A measurement of branching ratios of D+D^+ and Ds+D^+_s hadronic decays to four-body final states containing a KSK_S

    Full text link
    We have studied hadronic four-body decays of D+D^+ and Ds+D^+_s mesons with a KSK_S in the final state using data recorded during the 1996-1997 fixed-target run at Fermilab high energy photoproduction experiment FOCUS. We report a new branching ratio measurement of Γ(D+KSKπ+π+)/Γ(D+KSπ+π+π)=0.0768±0.0041±0.0032\Gamma(D^+\to K_S K^-\pi^+\pi^+)/\Gamma(D^+\to K_S \pi^+\pi^+\pi^-)=0.0768\pm0.0041\pm0.0032. We make the first observation of three new decay modes with branching ratios Γ(D+KSK+π+π)/Γ(D+KSπ+π+π)=0.0562±0.0039±0.0040\Gamma(D^+\to K_S K^+\pi^+\pi^-)/\Gamma(D^+\to K_S \pi^+\pi^+\pi^-)=0.0562\pm0.0039\pm0.0040, \Gamma(D^+\to\K_S K^+ K^-\pi^+)/\Gamma(D^+\to K_S \pi^+\pi^+\pi^-)=0.0077\pm0.0015\pm0.0009, and Γ(Ds+KSK+π+π)/Γ(Ds+KSKπ+π+)=0.586±0.052±0.043\Gamma(D^+_s\to K_S K^+\pi^+\pi^-)/\Gamma(D^+_s\to K_S K^-\pi^+\pi^+)=0.586\pm0.052\pm0.043, where in each case the first error is statistical and the second error is systematic.Comment: 4 pages, 1 table, 2 figures, submitted to Physical Review Letter

    A Measurement of the Ds+ Lifetime

    Full text link
    A high statistics measurement of the Ds+ lifetime from the Fermilab fixed-target FOCUS photoproduction experiment is presented. We describe the analysis of the two decay modes, Ds+ -> phi(1020)pi+ and Ds+ -> \bar{K}*(892)0K+, used for the measurement. The measured lifetime is 507.4 +/- 5.5 (stat.) +/- 5.1 (syst.) fs using 8961 +/- 105 Ds+ -> phi(1020)pi+ and 4680 +/- 90 Ds+ -> \bar{K}*(892)0K+ decays. This is a significant improvement over the present world average.Comment: 5 pages, 3 figures, 2 tables, submitted to PR

    New FOCUS results on charm mixing and CP violation

    Get PDF
    We present a summary of recent results on CP violation and mixing in the charm quark sector based on a high statistics sample collected by photoproduction experiment FOCUS (E831 at Fermilab). We have measured the difference in lifetimes for the D0D^0 decays: D0Kπ+D^0 \to K^-\pi^+ and D0KK+D^0 \to K^-K^+. This translates into a measurement of the yCPy_{CP} mixing parameter in the \d0d0 system, under the assumptions that KK+K^-K^+ is an equal mixture of CP odd and CP even eigenstates, and CP violation is negligible in the neutral charm meson system. We verified the latter assumption by searching for a CP violating asymmetry in the Cabibbo suppressed decay modes D+KK+π+D^+ \to K^-K^+\pi^+, D0KK+D^0 \to K^-K^+ and D0ππ+D^0 \to \pi^-\pi^+. We show preliminary results on a measurement of the branching ratio Γ(D+π+(K+π))/Γ(D+π+(Kπ+))\Gamma(D^{*+}\to \pi^+ (K^+\pi^-))/\Gamma(D^{*+}\to \pi^+ (K^-\pi^+)).Comment: 9 pages, 6 figures, requires espcrc2.sty. Presented by S.Bianco at CPConf2000, September 2000, Ferrara (Italy). In this revision, fixed several stylistic flaws, add two significant references, fixed a typo in Tab.

    Deriving a mutation index of carcinogenicity using protein structure and protein interfaces

    Get PDF
    With the advent of Next Generation Sequencing the identification of mutations in the genomes of healthy and diseased tissues has become commonplace. While much progress has been made to elucidate the aetiology of disease processes in cancer, the contributions to disease that many individual mutations make remain to be characterised and their downstream consequences on cancer phenotypes remain to be understood. Missense mutations commonly occur in cancers and their consequences remain challenging to predict. However, this knowledge is becoming more vital, for both assessing disease progression and for stratifying drug treatment regimes. Coupled with structural data, comprehensive genomic databases of mutations such as the 1000 Genomes project and COSMIC give an opportunity to investigate general principles of how cancer mutations disrupt proteins and their interactions at the molecular and network level. We describe a comprehensive comparison of cancer and neutral missense mutations; by combining features derived from structural and interface properties we have developed a carcinogenicity predictor, InCa (Index of Carcinogenicity). Upon comparison with other methods, we observe that InCa can predict mutations that might not be detected by other methods. We also discuss general limitations shared by all predictors that attempt to predict driver mutations and discuss how this could impact high-throughput predictions. A web interface to a server implementation is publicly available at http://inca.icr.ac.uk/
    corecore