2,236 research outputs found
Method of fan sound mode structure determination
A method for the determination of fan sound mode structure in the Inlet of turbofan engines using in-duct acoustic pressure measurements is presented. The method is based on the simultaneous solution of a set of equations whose unknowns are modal amplitude and phase. A computer program for the solution of the equation set was developed. An additional computer program was developed which calculates microphone locations the use of which results in an equation set that does not give rise to numerical instabilities. In addition to the development of a method for determination of coherent modal structure, experimental and analytical approaches are developed for the determination of the amplitude frequency spectrum of randomly generated sound models for use in narrow annulus ducts. Two approaches are defined: one based on the use of cross-spectral techniques and the other based on the use of an array of microphones
Competing Phases, Strong Electron-Phonon Interaction and Superconductivity in Elemental Calcium under High Pressure
The observed "simple cubic" (sc) phase of elemental Ca at room temperature in
the 32-109 GPa range is, from linear response calculations, dynamically
unstable. By comparing first principle calculations of the enthalpy for five
sc-related (non-close-packed) structures, we find that all five structures
compete energetically at room temperature in the 40-90 GPa range, and three do
so in the 100-130 GPa range. Some competing structures below 90 GPa are
dynamically stable, i.e., no imaginary frequency, suggesting that these
sc-derived short-range-order local structures exist locally and can account for
the observed (average) "sc" diffraction pattern. In the dynamically stable
phases below 90 GPa, some low frequency phonon modes are present, contributing
to strong electron-phonon (EP) coupling as well as arising from the strong
coupling. Linear response calculations for two of the structures over 120 GPa
lead to critical temperatures in the 20-25 K range as is observed, and do so
without unusually soft modes.Comment: 8 pages, 6 figures, 1 table, accepted for publication in Phys. Rev.
Calculated Momentum Dependence of Zhang-Rice States in Transition Metal Oxides
Using a combination of local density functional theory and cluster exact
diagonalization based dynamical mean field theory, we calculate many body
electronic structures of several Mott insulating oxides including undoped high
T_{c} materials. The dispersions of the lowest occupied electronic states are
associated with the Zhang-Rice singlets in cuprates and with doublets,
triplets, quadruplets and quintets in more general cases. Our results agree
with angle resolved photoemission experiments including the decrease of the
spectral weight of the Zhang--Rice band as it approaches k=0
Magnetic reconstruction at (001) CaMnO surface
The Mn-terminated (001) surface of the stable anti-ferromagnetic insulating
phase of cubic perovskite CaMnO is found to undergo a magnetic
reconstruction consisting on a spin-flip process at surface: each Mn spin at
the surface flips to pair with that of Mn in the subsurface layer. In spite of
very little Mn-O charge transfer at surface, the surface behavior is driven by
the states due to charge redistribution. These
results, based on local spin density theory, give a double exchange like
coupling that is driven by character, not additional charge, and may have
relevance to CMR materials.Comment: 4 pages, 5 figures reference added Fig. 3 modified. Caption of Fig. 5
modifie
Visualizing Pure Quantum Turbulence in Superfluid He: Andreev Reflection and its Spectral Properties
Superfluid He-B in the zero-temperature limit offers a unique means of
studying quantum turbulence by the Andreev reflection of quasiparticle
excitations by the vortex flow fields. We validate the experimental
visualization of turbulence in He-B by showing the relation between the
vortex-line density and the Andreev reflectance of the vortex tangle in the
first simulations of the Andreev reflectance by a realistic 3D vortex tangle,
and comparing the results with the first experimental measurements able to
probe quantum turbulence on length scales smaller than the inter-vortex
separation.Comment: 5 pages, 4 figures, and Supplemental Material (2 pages, 2 figures
Implications of the B20 Crystal Structure for the Magneto-electronic Structure of MnSi
Due to increased interest in the unusual magnetic and transport behavior of
MnSi and its possible relation to its crystal structure (B20) which has unusual
coordination and lacks inversion symmetry, we provide a detailed analysis of
the electronic and magnetic structure of MnSi. The non-symmorphic P2_13
spacegroup leads to unusual fourfold degenerate states at the zone corner R
point, as well as ``sticking'' of pairs of bands throughout the entire
Brillouin zone surface. The resulting Fermi surface acquires unusual features
as a result of the band sticking. For the ferromagnetic system (neglecting the
long wavelength spin spiral) with the observed moment of 0.4 \mu_B/Mn, one of
the fourfold levels at R in the minority bands falls at the Fermi energy (E_F),
and a threefold majority level at k=0 also falls at E_F. The band sticking and
presence of bands with vanishing velocity at E_F imply an unusually large phase
space for long wavelength, low energy interband transitions that will be
important for understanding the unusual resistivity and far infrared optical
behavior.Comment: Nine two-column pages with eight figures include
AUSSAT battery life test program
AUSSAT Pty. Ltd., the Australian National Satellite organization, has contracted with the Hughes Aircraft Company (HAC) for the construction of 3 satellites based on the now familiar HS-376 product line. As part of the AUSSAT contract, HAC is conducting an extensive NiCd battery life test program. The life test program, objectives and test results to date are described. Particular emphasis is given to the evaluation of the FS2117 separator as a future replacement for the Pellon 2505 separator of which only a very limited quantity remains
Construction of Self-Dual Integral Normal Bases in Abelian Extensions of Finite and Local Fields
Let be a finite Galois extension of fields with abelian Galois group
. A self-dual normal basis for is a normal basis with the
additional property that for .
Bayer-Fluckiger and Lenstra have shown that when , then
admits a self-dual normal basis if and only if is odd. If is an
extension of finite fields and , then admits a self-dual normal
basis if and only if the exponent of is not divisible by . In this
paper we construct self-dual normal basis generators for finite extensions of
finite fields whenever they exist.
Now let be a finite extension of \Q_p, let be a finite abelian
Galois extension of odd degree and let \bo_L be the valuation ring of . We
define to be the unique fractional \bo_L-ideal with square equal to
the inverse different of . It is known that a self-dual integral normal
basis exists for if and only if is weakly ramified. Assuming
, we construct such bases whenever they exist
Cusp energetic ions: A bow shock source
Recent interpretations of cusp energetic ions observed by the POLAR spacecraft have suggested a new energization process in the cusp [Chen et al., 1997; 1998]. Simultaneous enhancement of H+, He+2, and O\u3e+2 fluxes indicates that they are of solar wind origin. In the present study, we examine H+ and He+2 energy spectra from 20 eV to several 100 keV measured by the Hydra, Toroidal Imaging Mass-Angle Spectrograph (TIMAS), and Charge and Mass Magnetospheric Ion Composition Experiment (CAMMICE) on POLAR. The combined spectrum for each species is shown to be continuous with a thermal distribution below 10 keV/e and an energetic component above 20 keV/e. Energetic ions with comparable fluxes and a similar spectral shape are commonly observed downstream from the Earth\u27s quasi-parallel (Q∥) bow shock. In addition to the similarity in the ion spectra, electric and magnetic field noise and turbulence detected in the cusp by the Plasma Wave Instrument (PWI) and Magnetic Field Experiment (MFE) onboard POLAR are similar to the previously reported observations at the bow shock. The waves appear to be coincidental to the cusp energetic ions rather than causal. We suggest that these ions are not accelerated locally in the cusp. Rather, they are accelerated at the Q∥ bow shock and enter the cusp along open magnetic field lines connecting both regions
Semimetalic antiferromagnetism in the half-Heusler compound CuMnSb
The half-Heusler compound CuMnSb, the first antiferromagnet (AFM) in the
Mn-based class of Heuslers and half-Heuslers that contains several conventional
and half metallic ferromagnets, shows a peculiar stability of its magnetic
order in high magnetic fields. Density functional based studies reveal an
unusual nature of its unstable (and therefore unseen) paramagnetic state, which
for one electron less (CuMnSn, for example) would be a zero gap semiconductor
(accidentally so) between two sets of very narrow, topologically separate bands
of Mn 3d character. The extremely flat Mn 3d bands result from the environment:
Mn has four tetrahedrally coordinated Cu atoms whose 3d states lie well below
the Fermi level, and the other four tetrahedrally coordinated sites are empty,
leaving chemically isolated Mn 3d states. The AFM phase can be pictured
heuristically as a self-doped CuMnSb compensated semimetal
with heavy mass electrons and light mass holes, with magnetic coupling
proceeding through Kondo and/or antiKondo coupling separately through the two
carrier types. The ratio of the linear specific heat coefficient and the
calculated Fermi level density of states indicates a large mass enhancement
, or larger if a correlated band structure is taken as the
reference
- …