618 research outputs found

    A robust method to identify cyclone tracks from gridded data

    Get PDF
    A system to derive tracks of barometric minima is presented. It is deliberately using coarse input data in space (order of 2°×2°) and time (6-hourly to daily) as well as information from just one geopotential level. It is argued that the results are, for one robust in the sense of an assumption of the IMILAST Project that the use of as simple as possible metrics should be strived for and for two tailored to the input from reanalyses and GCMs. The methodology presented is a necessary first step towards an automated storm track recognition scheme which will be employed in a second paper to study the future development of atmospheric dynamics in a changing climate. The process towards obtaining storm tracks is two-fold. In its first step cyclone centers are being identified. The performance of this step requires the existence of closed isolines, i.e., a topology in which a grid-point is surrounded by neighbours which all exhibit higher geopotential. The usage of this topology requirement as well as the constraint of coarse data may lead, though, to limitations in identifying centers in geopotential fields with shallow gradients that may occur in the summer months; moreover, some centers may potentially be missed in case of a configuration in which a small scale storm is located at the perimeter of a deep and very large low (a kind of "dent in a crater wall"). The second step of the process strings the identified cyclone centers together in a meaningful way to form tracks. By way of several examples the capability to identify known storm tracks is shown

    STAT-IMM, a statistical approach to determine local and background contributions to PM 10 levels

    Get PDF
    Abstract. When studying concentrations of particulate matter with a size of 10 µm or below (PM 10 ), measured locally, it becomes evident that two main portions need to be quantified: The concentration produced by sources in the vicinity of the station and the long range transports. The traditional approaches include analyses of the components of PM 10 , comparisons upwind and downwind of a station, investigation of trajectories and complex chemical transport modelling. The development of an independent strategy which makes use of statistical methods, including regression and correlation analysis is a reasonable alternative. This method, presented here, does not apply the concept of PM 10 sources, but, rather, analyzes the relations between times series of PM 10 measurements and atmospheric properties. It is applied to identify the shares of the local portion and the large-scale background plus a stochastic portion that cannot be attributed to either of the two. Using regression analysis, a set of objectively chosen meteorological parameters is used to reconstruct the local PM 10 measurement series, defining the local portion. This weather-dependent part of the series is then removed and the residuum, which contains the large-scale PM 10 background and a stochastic portion is analyzed further with correlations. Results are shown for a three-year set of data which includes well over 250 PM 10 stations across Germany. The data is analyzed according to different stratifications, such as the PM 10 load and the wind direction as well as for the data set as a whole. In a further development of the method, a study of PM 10 transports across several border sections is shown

    A study on the anomaly of pp over π\pi ratios in Au+AuAu+Au collisions with jet quenching

    Full text link
    The ratios of p/πp/\pi at large transverse momentum in central Au+AuAu+Au collisions at RHIC are studied in the framework of jet quenching based on a next-to-leading order pQCD parton model. It is shown that theoretical calculations with a gluon energy loss larger than the quark energy loss will naturally lead to a smaller p/πp/\pi ratios at large transverse momentum in Au+AuAu+Au collisions than those in p+pp+p collisions at the same energy. Scenarios with equal energy losses for gluons and quarks and a strong jet conversion are both explored and it is demonstrated in both scenarios p/πp/\pi ratios at high pTp_T in central Au+AuAu+Au collisions are enhanced and the calculated ratios of protons over pions approach to the experimental measurements. However, pˉ/p{\bar p}/p in the latter scenario is found to fit data better than that in the former scenario.Comment: 20 pages, 13 figures; revised version; accepted for publication in Journal of Physics

    Probing Shadowed Nuclear Sea with Massive Gauge Bosons in the Future Heavy-Ion Collisions

    Get PDF
    The production of the massive bosons Z0Z^0 and W±W^{\pm} could provide an excellent tool to study cold nuclear matter effects and the modifications of nuclear parton distribution functions (nPDFs) relative to parton distribution functions (PDFs) of a free proton in high energy nuclear reactions at the LHC as well as in heavy-ion collisions (HIC) with much higher center-of mass energies available in the future colliders. In this paper we calculate the rapidity and transverse momentum distributions of the vector boson and their nuclear modification factors in p+Pb collisions at sNN=63\sqrt{s_{NN}}=63TeV and in Pb+Pb collisions at sNN=39\sqrt{s_{NN}}=39TeV in the framework of perturbative QCD by utilizing three parametrization sets of nPDFs: EPS09, DSSZ and nCTEQ. It is found that in heavy-ion collisions at such high colliding energies, both the rapidity distribution and the transverse momentum spectrum of vector bosons are considerably suppressed in wide kinematic regions with respect to p+p reactions due to large nuclear shadowing effect. We demonstrate that in the massive vector boson productions processes with sea quarks in the initial-state may give more contributions than those with valence quarks in the initial-state, therefore in future heavy-ion collisions the isospin effect is less pronounced and the charge asymmetry of W boson will be reduced significantly as compared to that at the LHC. Large difference between results with nCTEQ and results with EPS09 and DSSZ is observed in nuclear modifications of both rapidity and pTp_T distributions of Z0Z^0 and WW in the future HIC.Comment: 13 pages, 21 figures, version accepted for publication in Eur. Phys. J.

    Positron annihilation lifetime spectroscopy at a superconducting electron accelerator

    Get PDF
    The Helmholtz-Zentrum Dresden-Rossendorf operates a superconducting linear accelerator for electrons with energies up to 35 MeV and average beam currents up to 1.6 mA. The electron beam is employed for production of several secondary beams including X-rays from bremsstrahlung production, neutrons, and positrons. The secondary positron beam after moderation feeds the Monoenergetic Positron Source (MePS) where positron annihilation lifetime (PALS) and positron annihilation Doppler-broadening experiments in materials science are performed in parallel. The adjustable repetition rate of the continuous-wave electron beams allows matching of the pulse separation to the positron lifetime in the sample under study. The energy of the positron beam can be set between 0.5 keV and 20 keV to perform depth resolved defect spectroscopy and porosity studies especially for thin films

    Prostate Intrafraction Translation Margins for Real-Time Monitoring and Correction Strategies

    Get PDF
    The purpose of this work is to determine appropriate radiation therapy beam margins to account for intrafraction prostate translations for use with real-time electromagnetic position monitoring and correction strategies. Motion was measured continuously in 35 patients over 1157 fractions at 5 institutions. This data was studied using van Herk's formula of (αΣ + γσ') for situations ranging from no electromagnetic guidance to automated real-time corrections. Without electromagnetic guidance, margins of over 10 mm are necessary to ensure 95% dosimetric coverage while automated electromagnetic guidance allows the margins necessary for intrafraction translations to be reduced to submillimeter levels. Factors such as prostate deformation and rotation, which are not included in this analysis, will become the dominant concerns as margins are reduced. Continuous electromagnetic monitoring and automated correction have the potential to reduce prostate margins to 2-3 mm, while ensuring that a higher percentage of patients (99% versus 90%) receive a greater percentage (99% versus 95%) of the prescription dose

    Measurements of wind-wave growth and swell decay during the joint North Sea wave project (JONSWAP).

    Get PDF
    Wavo spectra were measured along a profile extending 160 km into the North Sea westward from Sylt for a period of ten weeks in 1969. Currents, tides, air-sea temperature differences and turbulence in the atmospheric boundary layer were also measured. the goal of the experiment (described in Part 1) was to determine the structure of the source function governing the energy balance of the wave spectrum, with particular emphasis on wave growth under stationary offshore wind conditions (Part 2) and the attention of swell in water of finito depth (Part 3). The source functions of wave spectra generated by offshore winds exhibit a characteristic plus-minus signature associated with the shift of the sharp spectral peak towards lower frequencies. The two-lobed distribution of the source function can be explained quantitively by the nonlinear transfer due to resonant wave-wave interactions (second order Bragg scattering). The evolution of a pronounced peak and its shift towards lower frequencies can also be understood as a self-stabilizing feature of this process. The decay rates determined for incoming swell varied considerably, but energy attenuation factors of two along the length of the profile were typical. This is in order of magnitude agreement with expected damping rates due to bottom friction. However, the strong tidal modulation predicted by theory for the case of a quadratic bottom friction law was not observed. Adverse winds did not affect the decay rate. Computations also rule out wave-wave interactions or dissipation due to turbulence outside the bottom boundary layer as effective mechanisms of swell attenuation. We conclude that either the generally accepted friction law needs to be significantly modified or that some other mechanism, such as scattering by bottom irregularities, is the cause of the attenuation. The dispersion characteristics of thw swells indicated rather nearby origins, for which the classical DELTA-event model was generally inapplicable. A strong Doppler modulation by tidal currents was also observed. (A

    Language change for the worse

    Get PDF
    Many theories hold that language change, at least on a local level, is driven by a need for improvement. The present volume explores to what extent this assumption holds true, and whether there is a particular type of language change that we dub language change for the worse, i.e., change with a worsening effect that cannot be explained away as a side-effect of improvement in some other area of the linguistic system. The chapters of the volume, written by leading junior and senior scholars, combine expertise in diachronic and historical linguistics, typology, and formal modelling. They focus on different aspects of grammar (phonology, morphosyntax, semantics) in a variety of language families (Germanic, Romance, Austronesian, Bantu, Jê-Kaingang, Wu Chinese, Greek, Albanian, Altaic, Indo-Aryan, and languages of the Caucasus). The volume contributes to ongoing theoretical debates and discussions between linguists with different theoretical orientations

    Hunting the eagle killer: A cyanobacterial neurotoxin causes vacuolar myelinopathy

    Get PDF
    Vacuolar myelinopathy is a fatal neurological disease that was initially discovered during a mysterious mass mortality of bald eagles in Arkansas in the United States. The cause of this wildlife disease has eluded scientists for decades while its occurrence has continued to spread throughout freshwater reservoirs in the southeastern United States. Recent studies have demonstrated that vacuolar myelinopathy is induced by consumption of the epiphytic cyanobacterial species Aetokthonos hydrillicola growing on aquatic vegetation, primarily the invasive Hydrilla verticillata. Here, we describe the identification, biosynthetic gene cluster, and biological activity of aetokthonotoxin, a pentabrominated biindole alkaloid that is produced by the cyanobacterium A. hydrillicola. We identify this cyanobacterial neurotoxin as the causal agent of vacuolar myelinopathy and discuss environmental factors-especially bromide availability-that promote toxin production
    corecore