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Abstract. When studying concentrations of particulate matter with a size of 10µm or below (PM10), measured
locally, it becomes evident that two main portions need to be quantified: The concentration produced by
sources in the vicinity of the station and the long range transports. The traditional approaches include analyses
of the components of PM10, comparisons upwind and downwind of a station, investigation of trajectories
and complex chemical transport modelling. The development of an independent strategy which makes use
of statistical methods, including regression and correlation analysis is a reasonable alternative. This method,
presented here, does not apply the concept of PM10 sources, but, rather, analyzes the relations between times
series of PM10 measurements and atmospheric properties. It is applied to identify the shares of the local portion
and the large-scale background plus a stochastic portion that cannot be attributed to either of the two. Using
regression analysis, a set of objectively chosen meteorological parameters is used to reconstruct the local PM10

measurement series, defining the local portion. This weather-dependent part of the series is then removed and
the residuum, which contains the large-scale PM10 background and a stochastic portion is analyzed further
with correlations. Results are shown for a three-year set of data which includes well over 250 PM10 stations
across Germany. The data is analyzed according to different stratifications, such as the PM10 load and the
wind direction as well as for the data set as a whole. In a further development of the method, a study of PM10

transports across several border sections is shown.

1 Introduction

1.1 Demands on an assessment of PM10 portions

The pollution load of particulate matter, both from local
emissions and longe range transports, constitutes a major
problem in air quality. Meteorological conditions determine
how the particles are transported and which concentrations
are detected locally. In order to assess the effort/benefit ra-
tio of regional and federal emission reduction measures in
Germany, the share of measured concentrations of particu-
late matter of 10µm or less (PM10), advected from outside
the country, is of major importance (EU, 1996; EU-Council,
1997; EU, 1999; Garber et al., 2002). Therefore, a major goal
is to discern theaveragePM10 portions local (IL), large-scale
background (IB) and stochastic (IS).

In the past there were numerous studies which aimed at the
identification of local and background portions of pollutants,
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which often used a combination of physical and statistical
methods, e.g.,Merrill et al. (1985), Harris and Kahl(1990)
or Oltmans et al.(1996). Studies, e.g., byMan and Shih
(2001), van Dingenen et al.(2004), Querol et al.(2004) or
Querol et al. (2007) were focusing on particulate matter. This
study aims to complement them and offers a straightforward
approach to discern the PM10 portions.

Such an exercise should keep representativity in mind.
Thus it should be able to produce results for a continuous
time span and describe average conditions. It should fur-
thermore aim at a description that can be verified by actual
measurements. We are aware that PM10 observations con-
tain gaps and errors. A detailed investigation of these factors
is given in Warnecke et al.(2006). Rigorous state-of-the-
art quality control including homogenization and correction
must be performed beforehand. It is acknowledged that after
the application of these procedures there may be remanent
systematic errors in the PM10 levelsbut experience shows
that the variability of the measurementerrors is consider-
ably lower. The method presented here focuses on regression
and correlation which both evaluate variabilities rather than
means.
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All causes for potential errors notwithstanding, we argue
that the use of PM10 measurements is more effective than the
determination of source strengths, because for the latter the
processes that produce and convert PM10 are not sufficiently
known, wherefore a source-based PM10 quantification has
considerable error margins (Stern, 2006).

1.2 Approaches to PM10 assessment

There are four main approaches to quantify what is produced
in the vicinity and what is belonging to the background, pos-
sibly transported over longer distances.

– Laboratory analysis of PM10 components (Stohl and
Kromp-Kolb, 1994; Lenschow et al., 2001; Querol et
al., 2004): This method is better suitable for PM10

episodes than for an assessment of the mean state.

– Upwind/Downwind Method (Hainisch and Neubauer,
2004): Here, groups of measurements upwind and
downwind of potential PM10 sources are compared.
This method has expedient aspects because it usescon-
centrations(that which isreceivedat a measurement
station), rather thanemissions, i.e., source strengths
which are very difficult to estimate (cf. Sect.1.1).

– Trajectory analysis (Danielsen, 1974; Seibert, 1993):
This method combines elements of the source-
identifying laboratory analyses and the quantitative up-
wind/downwind approach by way of tracing the origin
of PM10 concentrations measured at a station. It is bet-
ter suitable for single high-concentration episodes than
for the assessment of an extended time span.

– Transport modelling (Yamartino et al., 1992; Stern,
2003, 2006): This set of approaches aims at a physi-
cally appropriate description of all PM10-relevant pro-
cesses. This very complex approach is highly dependent
on a correct assumption of the magnitude of the PM10

sources - prone to large uncertainties (cf. Sect.1.1). As
noted invan Loon et al.(2004) andStern(2006), this is
particularly visible in these models’ underestimation of
measured high PM10 concentrations.

It should be added that, for all approaches above, terms
like “local”, “background”, “vicinity” or “long distance” are
used by the respective authors as orientation categories rather
than being attributable to fixed sizes. A definition according
to the statistical method presented here is given in Sect.3.3.

1.3 STAT-IMM, yet another method?

At first, a distinction of the German pollution terminology
should be pointed out. It forms the word pair emission-
immission in order to tell apart quantities that are produced
and those which are arriving at a point of reference. Since
“immission” is not part of the international terminology, we

have resorted to the term “concentration” for the text. How-
ever, this emission-immission concept was also used for
naming the PM10 analysis method in German, hence it is
called STAT-IMM, i.e., STATistical analysis of IMMission
measurements. The method is based on a few key theses
which link physical properties and mathematical/statistical
concepts:

1. The variability (a second order moment) of a PM10 se-
ries can, after minimizing the local PM10 contribution,
be separated into long-range transport and stochastical
portion.

2. The terms large-scale background and long-range trans-
port can be used in an equivalent way.

3. The correlation coefficient, when applied as in item 1 is
the measure of the variability’s (percentual) fraction of
the large-scale background;

4. The magnitude of the large-scale background can be
linked to and expressed by the standard deviation of the
series.

STAT-IMM evaluates solelyconcentrations, thus circum-
venting the problematic assessment of source strengths. It
applies the statistical techniques of regression and correla-
tion to a spatial set of PM10 measurements. By themselves,
these techniques are of course not novel but STAT-IMM ap-
plies them in a different setting, comprehensively described
in Kreienkamp et al.(2007). They are employed to indirectly
reconstruct local time series – a necessary step in assessing
the local PM10 component (by way of regression), to assess
the magnitude of the long range transport (by way of corre-
lation) and to separate long-range transport from stochastic
fluctuations (also by way of correlation). Another impor-
tant STAT-IMM feature is that it is not restricted to selected
episodes – it addresses a continuous timeframe, for summer
and winter separately.

2 Data

The following data types were used:

– Atmospheric three-dimensional climatology data from
the NCEP-NCAR Reanalyses (Kalnay et al., 1996). At-
mospheric data are supplying the predictors for the re-
gression analysis and they are used for large-scale wind
direction information.

– Air quality data from the data archive of the German
Federal Environment Agency (UBA). 268 stations mea-
suring PM10 from 2001 to 2003 were used; half-hourly
data were aggregated into hourly data, from which daily
averages were computed. Data quality control and the
supplement of missing data were carried out by the
fully automated tool (Kreienkamp and Enke,
2005).
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– Air quality data from the/ web archive
of the European Environment Agency (EEA), European
Topic Center (ETC) for Air and Climate Change. 344
station time series from the Czech Republic, Austria,
Switzerland, France and the Netherlands for the 2001-
2003 period were selected. Quality control and the sup-
plement of missing data were performed as with the
German subset.

3 Method

3.1 Analysis of spurious correlations

Within STAT-IMM, spurious associations, such as annual
and weekly cycles are identified and removed. The former
is of no relevance to the results, since a large-scale, continu-
ous data set is analyzed in which annual cycles are heteroge-
neous without phase consistency whilst the latter is subject
to human-induced fluctuations (e.g. traffic or industry). The
portion that can be attributed to the weekly cycle amounts to
3% of the total signal at most. This is a rather low figure due
to the long, continuous time span analyzed, the high vari-
ability of weekly cycles and the effect that long range PM10

transports may interfere with the weekly cycle.

3.2 Determination of the local portion of PM10

The local portion (IL) is identified first and then removed. To
achieve this, a regression analysis is employed. Local time
series of PM10 are indirectly reconstructed by way of other
properties, called predictors. The practise of determining
relations between large scale atmospheric information and
local measurements is well established, e.g., in the perfect
prog approach (Klein, 1971; Kruizinga and Murphy, 1989)
in statistical weather forecasting as well as in downscaling
techniques for large-scale climate models (Enke and Spekat,
1997). The full set of potential predictors which is offered to
the screening regression procedure would contain some 30
atmospheric parameters. This set, however, needs to be re-
duced, a step that is a necessary to achieve a regression based
on local characteristics of the atmosphere. There are proper-
ties, such as the advection, which are by definition non-local
and therefore have to be excluded from the set of predictors.
We are aware that this is a compromise, because in princi-
ple all properties have a potential to improve the quality of
the regression. However, the non-local predictors would be
adding elements of ambiguity to the regression equation and
thereby also diminish the efficiency of the procedure used
to determine the large-scale background. In practise, out of
the reducedpool of potential predictors the regression pro-
cess objectively chooses the ones with the highest predictive
power in a stepwise screening approach. Up to four of the po-
tential predictors are allowed to be chosen for each station; a
higher number would increase the danger of overfitting and
numerical instability. The predictors which the screening re-
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1997). The full set of potential predictors which is offered to
the screening regression procedure would contain some 30
atmospheric parameters. This set, however, needs to be re-
duced, a step that is a necessary to achieve a regression based
on local characteristics of the atmosphere. There are proper-
ties, such as the advection, which are by definition non-local
and therefore have to be excluded from the set of predictors.
We are aware that this is a compromise, because in princi-
ple all properties have a potential to improve the quality of
the regression. However, the non-local predictors would be
adding elements of ambiguity to the regression equation and
thereby also diminish the efficiency of the procedure used
to determine the large-scale background. In practise, out of
the reduced pool of potential predictors the regression pro-
cess objectively chooses the ones with the highest predictive
power in a stepwise screening approach. Up to four of the po-
tential predictors are allowed to be chosen for each station; a

higher number would increase the danger of overfitting and
numerical instability. The predictors which the screening re-
gression selects most frequently are the thermal wind of the
850/1000 hPa layer, the geopotential gradient of the 500 hPa
level and the temperature gradient in 850 hPa.

Figure 1. (a) Example for a map with correlation isolines. Shown
are the correlations with the station Potsdam (magenta dot). The
magenta ring around the station is the so-called influence circle
which is needed to determine the magnitude of the large-scale
PM10 background. (b) Example of a correlation map for the winter-
time PM10 concentration residuals (IB + IS) at station Schweinfurt
(see also Sect. 4.4). Shown are the six segments of the German bor-
der along which the large-scale background is computed: Coastal
(), Poland (), Czech Republic (), alpine (), France ()
and Belgium/Netherlands/Luxemburg (). The wind rose in the
top left corner indicates the frequency distribution of the wind for
the southern half of Germany (south of 50N).

3.3 Determination of the large-scale background and the
stochastic portion

Having quantified and removed the local PM10 portion
leaves the combination of IS + IB, the residual concentration,
to be analyzed further. For a given station X, the correlations
of the PM10-series (having IL removed) with all others is
computed. This results in a geographical distribution of cor-
relations which is visualized as a map with colour-coded iso-
correlates, as shown in Fig. 1(a). The correlations are com-
puted using a set of stations within and without Germany (cf.
Section 2) of which only those in Germany or in close prox-
imity to the border are graphed in the maps of this paper.

In order to derive the large-scale background, a qualitative
and a quantitative argument is used. Let us begin with the
qualitative reasoning. If we assume that the association be-
tween the time series at the reference station and all others
were perfect, then the correlation coefficient would be equal
to 1, i.e., the map displayed in Fig. 1(a) were entirely in dark
green colour and there would be no stochastic component.
Thus, whatever deviation from a correlation coefficient of 1
exists indicates the magnitude of the stochastic component
IS. This component includes, regardless of the small or large
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along which the large-scale background is computed: Coastal (),
Poland (), Czech Republic (), alpine (), France () and
Belgium/Netherlands/Luxemburg (). The polar plot in the top
left corner indicates the frequency distribution of the surface wind
direction for the southern half of Germany (south of 50◦ N).
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850/1000 hPa layer, the geopotential gradient of the 500 hPa
level and the temperature gradient in 850 hPa.

3.3 Determination of the large-scale background and the
stochastic portion

Having quantified and removed the local PM10 portion leaves
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scale character of the signal (i) the asynchronous behaviour
of the time series involved, (ii) PM10 transformations, (iii)
PM10 sources and sinks and (iv) PM10 mixing.

Let us now turn to the quantitative reasoning. It involves
the definition of a so-called influence circle around the refer-
ence station which is indicated as a magenta ring in Fig. 1(a).
It is assumed that whatever remaining local influence there
might be tapers off at a distance of 50 km from the reference
station. The size of the circle is empirically determined as a
balance between the minimization of local influences and re-
taining as much as possible of the large-scale background1.
In the iso-correlation map, the squared correlation is aver-
aged along this influence circle. This is necessary because
the explained co-variance between measurement series is as-
sessed. It should be pointed out that this procedure evaluates
the correlation in the neighbourhood of the station outside
the influence circle but ignores all correlation values from its
immediate vicinity, i.e., from within the circle.

Therefore, the stochastic portion vanishes if the correla-
tion coefficient along the influence circle equals 1; the large-
scale background vanishes if the the correlations coefficient
equals 0; the local portion vanishes if the mean total concen-
tration at a station equals the standard deviation of the sta-
tion’s series. The latter indeed happens but such cases are (i)
extremely rare in the analyzed data set and (ii) indicate that
the station is representative only for a very confined area be-
cause its PM10-variability is extremely deviating from that
in the surrounding area (example: a single, highly traffic-
influenced station in a rural part of the network); Flemming
et al. (2005) analyzed the spatial representativeness of differ-
ent station types and developed a revised objective classifi-
cation scheme for air quality regimes.

3.4 Example for the component separation

Here is an example using concentration data from a PM10
station (Potsdam), taken between 2001 and 2003; the winter
half-year is selected. A total average daily concentration TC
of 29.2µg/m3 (=100%) occurred with a standard deviation
S dev of 19.3µg/m3 . The averaged (squared) correlation over
the 50 km influence circle yielded a value of R = 0.79.

• Stochastic portion IS: (1 − R) · S dev = 4.1µg/m3 or as a
percentage 4.1/TC · 100 = 14%.

• Large-scale background IB: R · S dev = 15.2µg/m3 or as
a percentage 15.2/TC · 100 = 52%.

• Local portion IL: TC - (IS + IB) = 9.9µg/m3 or as a
percentage 9.9/TC · 100 = 34%.

1Tests with different sizes of the circle showed that too small di-
ameters would for some stations place too few reference points (i.e.
other measuring stations) in its vicinity; enlarging the circle, on the
other hand leads to an increasing stochastic portion and an artificial
reduction of the target property: the large-scale background.

4 Results

4.1 Signal strength assessment

An important first step is the assessment of the overall poten-
tial of detecting signals by way of correlation analysis. Fig. 2
shows that correlation is not only indicative of the PM10
large-scale background magnitude but can be used as well
to determine in which regions strong signals can be expected
at all. This is achieved by computing the correlation of all
stations with all others (not, as in the other maps, of one sta-
tion with all others) and extracting the long range transport
portions as described in Section 3.4. The respective percent-
ages for the average summer and winter conditions from the
period 2001–2003 are graphed in Fig. 2.

Figure 2. Large-scale background portion (in per cent) of PM10
concentrations derived by evaluating the correlation between each
time series with every other series. Left: Summer, right: winter
conditions.

The extended areas with a large-scale background portion
of about 30% in summer and of 50% or more in winter indi-
cate a good detectability of signals in the north half of Ger-
many and, at least in the wintertime, in southern and eastern
Bavaria, too. The seasonal difference in magnitude can be
explained by a stronger atmospheric motion in winter which
results in stronger transports.

Kreienkamp et al. (2007) give tables of IB, IL, IS and TC
using STAT-IMM for a selection of German stations which
aims at a good geographic coverage. IB tends to be in a range
of 25–50%; the same range was found for these stations for
IL and IS amounted to 20–40%.

4.2 Dependence on concentration levels

For the following analyses we have picked the station Braun-
schweig, because it is located in the area with a strong overall
signal (see Fig. 2 and Section 4.1) and it is closer to the geo-
metric center of Germany, thus enabling a more uniform pic-
ture, e.g., with respect to advection. Fig. 3 shows the corre-

Adv. Sci. Res. www.adv-sci-res.net

Figure 2. Large-scale background portion (in per cent) of PM10

concentrations derived by evaluating the correlation between each
time series with every other series. Left: Summer, right: winter
conditions.

IS. This component includes, regardless of the small or large
scale character of the signal (i) the asynchronous behaviour
of the time series involved, (ii) PM10 transformations, (iii)
PM10 sources and sinks and (iv) PM10 mixing.

Let us now turn to the quantitative reasoning. It involves
the definition of a so-called influence circle around the refer-
ence station which is indicated as a magenta ring in Fig. 1a.
It is assumed that whatever remaining local influence there
might be tapers off at a distance of 50 km from the reference
station. The size of the circle is empirically determined as a
balance between the minimization of local influences and re-
taining as much as possible of the large-scale background1.
In the iso-correlation map, thesquaredcorrelation is aver-
aged along this influence circle. This is necessary because
the explained co-variance between measurement series is as-
sessed. It should be pointed out that this procedure evaluates
the correlation in the neighbourhood of the station outside
the influence circle but ignores all correlation values from its
immediate vicinity, i.e., from within the circle.

Therefore, the stochastic portion vanishes if the correlation
coefficient along the influence circle equals 1; the large-scale
background vanishes if the the correlations coefficient equals
0; the local portion vanishes if the mean total concentration at
a station equals the standard deviation of the station’s series.
The latter indeed happens but such cases are (i) extremely
rare in the analyzed data set and (ii) indicate that the station is
representative only for a very confined area because its PM10-
variability is extremely deviating from that in the surround-
ing area (example: a single, highly traffic-influenced station

1Tests with different sizes of the circle showed that too small di-
ameters would for some stations place too few reference points (i.e.
other measuring stations) in its vicinity; enlarging the circle, on the
other hand leads to an increasing stochastic portion and an artificial
reduction of the target property: the large-scale background.

in a rural part of the network);Flemming et al.(2005) ana-
lyzed the spatial representativeness of different station types
and developed a revised objective classification scheme for
air quality regimes.

3.4 Example for the component separation

Here is an example using concentration data from a PM10

station (Potsdam), taken between 2001 and 2003; the winter
half-year is selected. A total average daily concentration TC

of 29.2µg/m3 (=100%) occurred with a standard deviation
Sdev of 19.3µg/m3 . The averaged (squared) correlation over
the 50 km influence circle yielded a value ofR=0.79.

– Stochastic portion IS:
(1−R)·Sdev=4.1µg/m3 or as a percentage
4.1/TC·100=14%.

– Large-scale background IB:
R·Sdev=15.2µg/m3 or as a percentage
15.2/TC·100=52%.

– Local portion IL :
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9.9/TC·100=34%.

4 Results

4.1 Signal strength assessment

An important first step is the assessment of the overall poten-
tial of detecting signals by way of correlation analysis. Fig-
ure 2 shows that correlation is not only indicative of the PM10

large-scale background magnitude but can be used as well to
determine in which regions strong signals can be expected
at all. This is achieved by computing the correlation of all
stations with all others (not, as in the other maps, of one sta-
tion with all others) and extracting the long range transport
portions as described in Sect.3.4. The respective percent-
ages for the average summer and winter conditions from the
period 2001–2003 are graphed in Fig. 2.

The extended areas with a large-scale background portion
of about 30% in summer and of 50% or more in winter indi-
cate a good detectability of signals in the north half of Ger-
many and, at least in the wintertime, in southern and eastern
Bavaria, too. The seasonal difference in magnitude can be
explained by a stronger atmospheric motion in winter which
results in stronger transports.

Kreienkamp et al.(2007) give tables of IB, IL , IS and TC

using STAT-IMM for a selection of German stations which
aims at a good geographic coverage. IB tends to be in a
range of 25–50%; the same range was found for these sta-
tions where IL and IS amount to 20–40%.
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Table 1. Breakdown of the total PM10 concentration (TC) into the large-scale background (IB), the local portion (IL) and the stochastic
portion (IS) at station Braunschweig for 2001–2003 wintertime data. The three portions are displayed in terms of percentage and amount
[µg/m3]. The columns indicate if all winter days (all) or the classes very low (vlow), low, medium (med), high (hi) or very high (vhi) were
used. The number of days in each class is given in parantheses. The tabulated information corresponds with the maps in Fig. 3.

all (546) vlow (171) low (117) med (81) high (99) vhi (78)
% µg/m3 % µg/m3 % µg/m3 % µg/m3 % µg/m3 % µg/m3

TC 45.2 30.8 43.8 46.6 51.1 70.0
IB 27 12.0 16 5.0 14 6.1 14 6.4 17 8.9 30 21.3
IL 47 21.2 61 18.9 62 27.0 62 28.9 57 29.1 49 34.5
IS 26 12.0 22 6.9 24 10.7 24 11.3 25 13.0 20 14.3
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Figure 3. Map of the correlation of the residual (large-scale background plus stochastic portion) PM10 time series at Station Braunschweig
with all other stations. The subfigures display the concentration magnitudes: (a) very low; (b) low; (c) medium; (d) high; (e) very high and
(f) all days, i.e., without magnitude differentiation. The three portions of the total concentration for each class are given in Tab. 1.

lation maps for wintertime PM10 levels at this station, strat-
ified by five classes and Tab. 1 shows the three concentration
portions for the five classes.

In the top left corner of each subfigure a wind direction po-
lar plot indicates the frequency distribution of the wind direc-
tion for the respective class. This PM10 concentration/wind
direction-relation can be assessed from Fig. 3 and Tab. 1,
keeping in mind that the property analyzed to obtain Fig. 3 is
the PM10 residuum, i.e., after the removal of the local por-

tion IL. Thus a combination of large-scale background and
stochastical portion is retained. It should be added that the
classification for the concentration magnitude is not station-
based but groups days with the respective levels averaged
over the whole northwest corner (north of 50N and west of
12E) of Germany.

• The (removed) local portion clearly dominates the time
series with values around 50% and more.
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4.2 Dependence on concentration levels

For the following analyses we have picked the station Braun-
schweig, because it is located in the area with a strong overall
signal (see Fig. 2 and Sect.4.1) and it is closer to the geomet-
ric center of Germany, thus enabling a more uniform picture,
e.g., with respect to advection. Figure 3 shows the correla-
tion maps for wintertime PM10 levels at this station, stratified
by five classes and Table1 shows the three concentration por-
tions for the five classes.

In the top left corner of each subfigure a wind direction
polar plot indicates the frequency distribution of the wind
direction for the respective class. This PM10 concentra-
tion/wind direction-relation can be assessed from Fig. 3 and
Table1, keeping in mind that the property analyzed to ob-
tain Fig. 3 is the PM10 residuum, i.e., after the removal of the
local portion IL . Thus a combination of large-scale back-
ground and stochastical portion is retained. It should be
added that the classification for the concentration magnitude
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Table 2. Cross-boundary analysis of large-scale background PM10 concentrations for station Potsdam stratified by wind direction (columns).
Tabulated is the Total Concentration (TC), and, as percentage and inµg/m3, the large-scale background (IB) and the portion (of TC) of the
cross-boundary transport for the coastal () and the Polish () segment. Wintertime data from 2001–2003 have been used.

Northeast Northwest Southwest Southeast
% µg/m3 % µg/m3 % µg/m3 % µg/m3

TC 29.2 24.5 29.4 52.1
IB 45 13.2 56 13.6 41 12.2 36 19.6
 11 3.2 13 3.2 9 2.5 8 4.2
 4 1.2 7 1.7 4 1.0 – –

is not station-based but groups days with the respective lev-
els averaged over the whole northwest corner (north of 50N
and west of 12E) of Germany.

– The (removed) local portion clearly dominates the time
series with values around 50% and more.

– Even at a low residuum concentrations there are high
correlations; in this value range the correlations tend to
be strongly associated with the wind direction.

– With higher concentration levels the wind directions
tends to be a factor of decreasing importance for the
shape of the strong correlation maximum surrounding
the station; yet, if there were no direction-dependence,
this maximum would be perfectly circular.

– Whereas the local portion and the stochastic portion
do not vary much there is almost a doubling of the
large-scale background towards the highest concen-
tration class. This behaviour is in conjunction with
the wind direction-dependency of PM10 concentrations
(cf. Sect.4.3) and can, at least in part, be explained by
an above-average share of southeasterly winds for days
with peak PM10 concentrations.

4.3 Dependence on wind direction

When stratifying the data according to wind direction, prob-
lems arise because of the uneven distribution in the four
quadrants which disallows a further differentiation, e.g., ac-
cording to magnitude classes. The unevenness can already be
deduced from the wind direction polar plot in Fig. 3 where
the NW and SW sector are much more frequent than the
NE and SE sectors. It turns out that southeasterly winds,
i.e., in the most infrequent quadrant (less than 10% of all
days) nevertheless are associated with the highest correla-
tions. Yet, the shape of the correlation maximum is oriented
away from and perpendicular to the SE quadrant. This un-
derlines that wind direction and PM10 concentrations are ex-
hibiting a more complex linkage than one might be tempted
to assume. Owing to the concept behind correlations, it also
indicates that synchronous behaviour in PM10 time series ex-
ists downwind, which points at the area of the station as a

source of PM10 variability. Consequently, the shape of the
correlation maximum in the maps must be interpreted with
caution.

4.4 Large-scale background and cross-border PM10

transport

In principle, the correlation-based analysis of PM10 concen-
trations is not restricted to an evaluation along the 50 km cir-
cle around the reference station. It was, indeed, carried out
along stretches of the boundary, too, as shown in Fig. 1b.
The example of station Schweinfurt is used because it has
significant (the 95% significance level for correlations based
on 500 values is, e.g., 0.09) cross-border large-scale back-
ground amounts for all border segments. In other areas of
Germany, these amounts were significant only for a few seg-
ments. Stations in proximity to boundaries show that up to
half of IB is linked to that boundary, but this behaviour ta-
pers off with distance. This entire effect is best developed
in Northern Germany where the overall signal magnitude is
largest (cf. Sect.4.1and Fig. 2). In conjunction with the Alps
or the French border, no strong large-scale background sig-
nals are detected.

A note of caution: Correlations, by themselves, cannot be
used to conclude if transports take placefrom or towards
an area. This is a consequence of the facts discussed in
Sects.4.2 and4.3. However, in principle, it is possible to
combine correlation results with a directional analysis, e.g.,
by examining them in conjunction with wind direction infor-
mation. The limitations caused by the imperfect concentra-
tion/wind direction-linkage notwithstanding, an attempt was
made to analyze the cross-border data stratified by wind di-
rection and an example result is given in Table 2.

When comparing the tabulated values with the informa-
tion from Fig. 2 it becomes clear that only the coastal and the
Polish boundary segment bear potential for cross-boundary
transports, due to the shape of the correlation maximum.
There is a pronounced direction-dependency which can be
seen, e.g., in the presence of the strongest coastal influence
for the NW wind quadrant as well as in the absence of a
coastal portion for the SE wind quadrant. The linkage to
cross-boundary transport w.r.t. Poland is visible best when
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looking at the concentration levels inµg/m3 where the SE
quadrant exhibits the highest values. However, due to the
relative proximity of the station to the Polish border, signifi-
cant values are found for all wind directions.

5 Conclusions

5.1 General remarks and comparison with other studies

The statistical method STAT-IMM, which analyzes PM10

concentrations rather then PM10 emissions, has shown to
be a workable approach to separate and quantify the three
shares in PM10 measurement series: Local portion, large-
scale background and stochastic portion. These are are con-
tained jointly in the PM10 series. We do not claim that STAT-
IMM yields aperfectseparation – for example the local por-
tion (expressed by the weather influence) can only be mini-
mized and not fully excluded. However, the approach with
its combination of regression and correlation constitutes an
alternative to the established methods (see Sects.1.2 and
5.1), relying neither on chemical nor on purely physical mod-
elling.

There are but very few comprehensive studies in which
the three PM10 portions were determined for all of Germany.
In Diegmann et al.(2006) (referred to as DEA06 hereafter)
there is a compilation of IS, IB and IL for 37 Stations. They
are neither covering all of the country, nor was the DEA06
analysis carried out using a common timeframe. However,
a key finding was that IB tends to be present in all series
with a fraction of at least 30% and at most 70%. Another
finding was that for 34 out of these 37 stations IB is the
strongest contributor – rivalled for a subset of 10 stations by
a traffic-related local contribution of comparable magnitude.
IL , termed “urban load” in DEA06 ranges from virtual non-
existence to a fraction of over 40%, which is also the case for
IS, termed “additional load” in DEA06. The corresponding
STAT-IMM results have been shown at the end of Sect.4.1.
Because the time frame and the detection regions of DEA06
and this study are not congruent, a full match of the magni-
tudes of the results can not be expected – in fact, taking the
large-scale background as an example, STAT-IMM predomi-
nantly indicates lower portions.

An other study to compare some of the STAT-IMM results
with is theStern(2006) report (referred to as S06 hereafter).
Its subject is the modelling – using the REM-CALGRID
model – of cross-boundary transports of PM10 and NO2.
S06 focuses on the concentrations that arrive from sources
in Poland at twelve PM10 stations in Berlin; its time frame is
the year 2002. They were computed to be around 10% of the
total PM10 concentrations. This magnitude is matched by the
STAT-IMM findings, although we used a longer time frame.

5.2 Evaluation

One topic that needs to be addressed is the robustness of the
STAT-IMM results. Due to the short time span for which
PM10 data were available a cross validation which would
have developed the statistical relations on a sub-period and
applied them to the complementary sub-period was not pos-
sible. Yet precautions were taken with respect to the statistic
stability. These include the log-transformation of the initial
values to ensure a better approximation to Gaussian proba-
bility density functions as well as a limitation to a selection
of up to four predictors in the screening regression.

Could the discrimination abilities of STAT-IMM with re-
spect to the three PM10 shares be enhanced ifall potential
predictors were to be used to determine the local portion? It
would appear that in this case the weather factors were more
fully taken into account. But, as explained in Sect.3.2, using
such an approach would blur the distinctions between local
and large-scale weather influences and thus have a detrimen-
tal effect on the determination of the large-scale background.

However, there seems to be a potential “correlation sink”
in the amount assigned to the stochastical portion, where
some information might be buried due to the fact that cor-
relations evaluate synchronous behaviour in the time series.
Using lag correlations is not helpful since they are employ-
ing a fixed lag and whatever lagged behaviour might exist
would be different for each station due to the varying dis-
tances. This effect would assign too much of the correlation
to the stochastic side, thus overestimating the stochastic por-
tion. Nevertheless, when prudently interpreting the statistical
analyses it can be stated that, particularly for the large-scale
background, there is a dependence on magnitude as well as
on advection.
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