163 research outputs found

    A robust uniform B-spline collocation method for solving the generalized PHI-four equation

    Get PDF
    In this paper, we develop a numerical solution based on cubic B-spline collocation method. By applying Von-Neumann stability analysis, the proposed technique is shown to be unconditionally stable. The accuracy of the presented method is demonstrated by a test problem. The numerical results are found to be in good agreement with the exact solution

    A probabilistic multi-objective approach for FACTS devices allocation with different levels of wind penetration under uncertainties and load correlation

    Get PDF
    This study presents a probabilistic multi-objective optimization approach to obtain the optimal locations and sizes of static var compensator (SVC) and thyristor-controlled series capacitor (TCSC) in a power transmission network with large level of wind generation. In this study, the uncertainties of the wind power generation and correlated load demand are considered. The uncertainties are modeled in this work using the points estimation method (PEM). The optimization problem is solved using the Multi-objective particle swarm optimization (MOPSO) algorithm to find the best position and rating of the flexible AC transmission system (FACTS) devices. The objective of the problem is to maximize the system loadability while minimizing the power losses and FACTS devices installation cost. Additionally, a technique based on fuzzy decision-making approach is employed to extract one of the Pareto optimal solutions as the best compromise one. The proposed approach is applied on the modified IEEE 30-bus system. The numerical results evince the effectiveness of the proposed approach and shows the economic benefits that can be achieved when considering the FACTS controller

    Detection and quantification of warfarin in pharmaceutical dosage form and in spiked human plasma using surface enhanced Raman scattering

    Get PDF
    Analytical approaches for the quantitation of warfarin in plasma are high in demand. In this study, a novel surface enhanced Raman scattering (SERS) technique for the quantification of the widely used anticoagulant warfarin sodium in pharmaceutical dosage form and in spiked human plasma was developed. The colloidal-based SERS measurements were carefully optimized considering the laser wavelength, the type of metal nanoparticles, their surface functionalization and concentration as well as the time required for warfarin to associate with the metal surface. Poly(diallyldimethylammonium chloride) coated silver nanoparticles (PDDA-AgNPs) were established as a substrate which greatly enhanced the weak warfarin Raman signal with high reproducibility. The limit of detection was calculated in both water and human plasma to be 0.56 nM (0.17 ngmL-1) and 0.25 nM (0.08 ngmL-1) respectively, with a high degree of accuracy and reproducibility. The proposed method is simple, economical, and easily applied for routine application requiring only small plasma samples and also could be potentially useful for pharmacokinetic research on warfarin

    Stability-indicating micellar enhanced spectro-fluorometric determination of Daclatasvir in its tablet and spiked human plasma

    Get PDF
    A fast, simple and sensitive micellar enhanced spectrofluorimetric method is performed for the determination of Daclatasvir dihydrochloride (DAC) in its pharmaceutical dosage form and in spiked human plasma. The fluorescence intensity (FI) was measured at 367 nm after excitation at 300 nm. In aqueous solution, the FI of DAC was greatly enhanced by >110% in the presence of sodium dodecyl sulphate (SDS). The detection method was linear over the range of 12.93 to 161.60 ng/mL, with a limit of detection of 1.75 ng/mL. The proposed method was successfully applied to the determination of DAC in its pharmaceutical dosage form and the mean % recovery of DAC in spiked human plasma was 95.42 ± 2.52. The developed methodology was also extended to stress studies of DAC after exposure to different forced degradation conditions including acidic, alkaline, photolytic, thermal and oxidative environments

    Optimized polydopamine coating and DNA conjugation onto gold nanorods for single nanoparticle bioaffinity measurements

    Get PDF
    Gold nanorods (NRs) have attracted a great deal of interest for a variety of biomedical and sensing applications. However, developing robust methods for biofunctionalizing NRs has continued to be challenging, especially for NR–DNA conjugates. This is due to the presence of cetyltrimethylammonium bromide (CTAB), which plays an essential role in controlling the anisotropic particle growth. In this article, we systematically explore the growth of a polydopamine (PDA) layer on a range of NR surfaces, comparing different polyelectrolyte and alkanethiol coatings as well as direct CTAB displacement. This revealed that the PDA layer thickness and growth rate is strongly dependent on the underlying nanorod functionalization chemistry and allowed us to establish a preferred route for the creation of stable, non-aggregated suspensions of PDA-coated NRs. The utility of this platform was then demonstrated by self-assembling packed monolayers of single-stranded DNA on the outer surface. Both the surface attachment and bioactivity of the resulting NR–DNA conjugates was then demonstrated by performing bulk solution and single nanoparticle imaging fluorescence measurements

    Development, validation, and proof-of-concept implementation of a two-year risk prediction model for undiagnosed atrial fibrillation using common electronic health data (UNAFIED)

    Get PDF
    Background: Many patients with atrial fibrillation (AF) remain undiagnosed despite availability of interventions to reduce stroke risk. Predictive models to date are limited by data requirements and theoretical usage. We aimed to develop a model for predicting the 2-year probability of AF diagnosis and implement it as proof-of-concept (POC) in a production electronic health record (EHR). Methods: We used a nested case-control design using data from the Indiana Network for Patient Care. The development cohort came from 2016 to 2017 (outcome period) and 2014 to 2015 (baseline). A separate validation cohort used outcome and baseline periods shifted 2 years before respective development cohort times. Machine learning approaches were used to build predictive model. Patients ≥ 18 years, later restricted to age ≥ 40 years, with at least two encounters and no AF during baseline, were included. In the 6-week EHR prospective pilot, the model was silently implemented in the production system at a large safety-net urban hospital. Three new and two previous logistic regression models were evaluated using receiver-operating characteristics. Number, characteristics, and CHA2DS2-VASc scores of patients identified by the model in the pilot are presented. Results: After restricting age to ≥ 40 years, 31,474 AF cases (mean age, 71.5 years; female 49%) and 22,078 controls (mean age, 59.5 years; female 61%) comprised the development cohort. A 10-variable model using age, acute heart disease, albumin, body mass index, chronic obstructive pulmonary disease, gender, heart failure, insurance, kidney disease, and shock yielded the best performance (C-statistic, 0.80 [95% CI 0.79-0.80]). The model performed well in the validation cohort (C-statistic, 0.81 [95% CI 0.8-0.81]). In the EHR pilot, 7916/22,272 (35.5%; mean age, 66 years; female 50%) were identified as higher risk for AF; 5582 (70%) had CHA2DS2-VASc score ≥ 2. Conclusions: Using variables commonly available in the EHR, we created a predictive model to identify 2-year risk of developing AF in those previously without diagnosed AF. Successful POC implementation of the model in an EHR provided a practical strategy to identify patients who may benefit from interventions to reduce their stroke risk

    Casemix, management, and mortality of patients receiving emergency neurosurgery for traumatic brain injury in the Global Neurotrauma Outcomes Study: a prospective observational cohort study

    Get PDF

    The global burden of adolescent and young adult cancer in 2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15–39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods: Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15–39 years to define adolescents and young adults. Findings: There were 1·19 million (95% UI 1·11–1·28) incident cancer cases and 396 000 (370 000–425 000) deaths due to cancer among people aged 15–39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59·6 [54·5–65·7] per 100 000 person-years) and high-middle SDI countries (53·2 [48·8–57·9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14·2 [12·9–15·6] per 100 000 person-years) and middle SDI (13·6 [12·6–14·8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23·5 million (21·9–25·2) DALYs to the global burden of disease, of which 2·7% (1·9–3·6) came from YLDs and 97·3% (96·4–98·1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation: Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Funding: Bill & Melinda Gates Foundation, American Lebanese Syrian Associated Charities, St Baldrick's Foundation, and the National Cancer Institute

    Global overview of the management of acute cholecystitis during the COVID-19 pandemic (CHOLECOVID study)

    Get PDF
    Background: This study provides a global overview of the management of patients with acute cholecystitis during the initial phase of the COVID-19 pandemic. Methods: CHOLECOVID is an international, multicentre, observational comparative study of patients admitted to hospital with acute cholecystitis during the COVID-19 pandemic. Data on management were collected for a 2-month study interval coincident with the WHO declaration of the SARS-CoV-2 pandemic and compared with an equivalent pre-pandemic time interval. Mediation analysis examined the influence of SARS-COV-2 infection on 30-day mortality. Results: This study collected data on 9783 patients with acute cholecystitis admitted to 247 hospitals across the world. The pandemic was associated with reduced availability of surgical workforce and operating facilities globally, a significant shift to worse severity of disease, and increased use of conservative management. There was a reduction (both absolute and proportionate) in the number of patients undergoing cholecystectomy from 3095 patients (56.2 per cent) pre-pandemic to 1998 patients (46.2 per cent) during the pandemic but there was no difference in 30-day all-cause mortality after cholecystectomy comparing the pre-pandemic interval with the pandemic (13 patients (0.4 per cent) pre-pandemic to 13 patients (0.6 per cent) pandemic; P = 0.355). In mediation analysis, an admission with acute cholecystitis during the pandemic was associated with a non-significant increased risk of death (OR 1.29, 95 per cent c.i. 0.93 to 1.79, P = 0.121). Conclusion: CHOLECOVID provides a unique overview of the treatment of patients with cholecystitis across the globe during the first months of the SARS-CoV-2 pandemic. The study highlights the need for system resilience in retention of elective surgical activity. Cholecystectomy was associated with a low risk of mortality and deferral of treatment results in an increase in avoidable morbidity that represents the non-COVID cost of this pandemic
    • …
    corecore