331 research outputs found

    Evaluation of SLC11A1 as an inflammatory bowel disease candidate gene

    Get PDF
    BACKGROUND: Significant evidence suggests that a promoter polymorphism withinthe gene SLC11A1 is involved in susceptibility to both autoimmune and infectious disorders. The aim of this study was to evaluate whether SLC11A1 has a role in the susceptibility to inflammatory bowel disease (IBD) by characterizing a promoter polymorphism within the gene and two short tandem repeat (STR) markers in genetic proximity to SLC11A1. METHODS: The studied population consisted of 484 Caucasians with IBD, 144 population controls, and 348 non-IBD-affected first-degree relatives of IBD patients. IBD subjects were re-categorized at the sub-disease phenotypic level to characterize possible SLC11A1 genotype-phenotype correlations. Polymorphic markers were amplified from germline DNA and typed using gel electrophoresis. Genotype-phenotype correlations were defined using case-control, haplotype, and family-based association studies. RESULTS: This study did not provide compelling evidence for SLC11A1 disease association; most significantly, there was no apparent evidence of SLC11A1 promoter allele association in the studied Crohn's disease population. CONCLUSION: Our results therefore refute previous studies that have shown SLC11A1 promoter polymorphisms are involved in susceptibility to this form of IBD

    Observation of Radiative Leptonic Decay of the Tau Lepton

    Full text link
    Using 4.68 fb^{-1} of e^+e^- annihilation data collected with the CLEO II detector at the Cornell Electron Storage Ring (CESR) we have studied tau radiative decays tau -> mu nu nu gamma and tau -> e nu nu gamma. For a 10 MeV minimum photon energy in the tau rest frame, the branching fraction of radiative tau decay to a muon or electron is measured to be (3.61+-0.16+-0.35)*10^{-3} or (1.75+-0.06+-0.17)*10^{-2}, respectively. The branching fractions are in agreement with the Standard Model theoretical predictions.Comment: 11 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    Special considerations for studies of extracellular vesicles from parasitic helminths: A community‐led roadmap to increase rigour and reproducibility

    Full text link
    Over the last decade, research interest in defining how extracellular vesicles (EVs) shape cross-species communication has grown rapidly. Parasitic helminths, worm species found in the phyla Nematoda and Platyhelminthes, are well-recognised manipulators of host immune function and physiology. Emerging evidence supports a role for helminth-derived EVs in these processes and highlights EVs as an important participant in cross-phylum communication. While the mammalian EV field is guided by a community-agreed framework for studying EVs derived from model organisms or cell systems [e.g., Minimal Information for Studies of Extracellular Vesicles (MISEV)], the helminth community requires a supplementary set of principles due to the additional challenges that accompany working with such divergent organisms. These challenges include, but are not limited to, generating sufficient quantities of EVs for descriptive or functional studies, defining pan-helminth EV markers, genetically modifying these organisms, and identifying rigorous methodologies for in vitro and in vivo studies. Here, we outline best practices for those investigating the biology of helminth-derived EVs to complement the MISEV guidelines. We summarise community-agreed standards for studying EVs derived from this broad set of non-model organisms, raise awareness of issues associated with helminth EVs and provide future perspectives for how progress in the field will be achieved

    Defense Against Cannibalism: The SdpI Family of Bacterial Immunity/Signal Transduction Proteins

    Get PDF
    The SdpI family consists of putative bacterial toxin immunity and signal transduction proteins. One member of the family in Bacillus subtilis, SdpI, provides immunity to cells from cannibalism in times of nutrient limitation. SdpI family members are transmembrane proteins with 3, 4, 5, 6, 7, 8, or 12 putative transmembrane α-helical segments (TMSs). These varied topologies appear to be genuine rather than artifacts due to sequencing or annotation errors. The basic and most frequently occurring element of the SdpI family has 6 TMSs. Homologues of all topological types were aligned to determine the homologous TMSs and loop regions, and the positive-inside rule was used to determine sidedness. The two most conserved motifs were identified between TMSs 1 and 2 and TMSs 4 and 5 of the 6 TMS proteins. These showed significant sequence similarity, leading us to suggest that the primordial precursor of these proteins was a 3 TMS–encoding genetic element that underwent intragenic duplication. Various deletional and fusional events, as well as intragenic duplications and inversions, may have yielded SdpI homologues with topologies of varying numbers and positions of TMSs. We propose a specific evolutionary pathway that could have given rise to these distantly related bacterial immunity proteins. We further show that genes encoding SdpI homologues often appear in operons with genes for homologues of SdpR, SdpI’s autorepressor. Our analyses allow us to propose structure–function relationships that may be applicable to most family members

    Reversible and Noisy Progression towards a Commitment Point Enables Adaptable and Reliable Cellular Decision-Making

    Get PDF
    Cells must make reliable decisions under fluctuating extracellular conditions, but also be flexible enough to adapt to such changes. How cells reconcile these seemingly contradictory requirements through the dynamics of cellular decision-making is poorly understood. To study this issue we quantitatively measured gene expression and protein localization in single cells of the model organism Bacillus subtilis during the progression to spore formation. We found that sporulation proceeded through noisy and reversible steps towards an irreversible, all-or-none commitment point. Specifically, we observed cell-autonomous and spontaneous bursts of gene expression and transient protein localization events during sporulation. Based on these measurements we developed mathematical population models to investigate how the degree of reversibility affects cellular decision-making. In particular, we evaluated the effect of reversibility on the 1) reliability in the progression to sporulation, and 2) adaptability under changing extracellular stress conditions. Results show that reversible progression allows cells to remain responsive to long-term environmental fluctuations. In contrast, the irreversible commitment point supports reliable execution of cell fate choice that is robust against short-term reductions in stress. This combination of opposite dynamic behaviors (reversible and irreversible) thus maximizes both adaptable and reliable decision-making over a broad range of changes in environmental conditions. These results suggest that decision-making systems might employ a general hybrid strategy to cope with unpredictably fluctuating environmental conditions
    corecore