78 research outputs found
The MSFC complementary metal oxide semiconductor (including multilevel interconnect metallization) process handbook
The fabrication techniques for creation of complementary metal oxide semiconductor integrated circuits at George C. Marshall Space Flight Center are described. Examples of C-MOS integrated circuits manufactured at MSFC are presented with functional descriptions of each. Typical electrical characteristics of both p-channel metal oxide semiconductor and n-channel metal oxide semiconductor discrete devices under given conditions are provided. Procedures design, mask making, packaging, and testing are included
Measurements of the Diffuse Ultraviolet Background and the Terrestrial Airglow with the Space Telescope Imaging Spectrograph
Far-UV observations in and near the Hubble Deep Fields demonstrate that the
Space Telescope Imaging Spectrograph (STIS) can potentially obtain unique and
precise measurements of the diffuse far-ultraviolet background. Although STIS
is not the ideal instrument for such measurements, high-resolution images allow
Galactic and extragalactic objects to be masked to very faint magnitudes, thus
ensuring a measurement of the truly diffuse UV signal. The programs we have
analyzed were not designed for this scientific purpose, but would be sufficient
to obtain a very sensitive measurement if it were not for a weak but
larger-than-expected signal from airglow in the STIS 1450-1900 A bandpass. Our
analysis shows that STIS far-UV crystal quartz observations taken near the limb
during orbital day can detect a faint airglow signal, most likely from NI\1493,
that is comparable to the dark rate and inseparable from the far-UV background.
Discarding all but the night data from these datasets gives a diffuse
far-ultraviolet background measurement of 501 +/- 103 ph/cm2/sec/ster/A, along
a line of sight with very low Galactic neutral hydrogen column (N_HI = 1.5E20
cm-2) and extinction (E(B-V)=0.01 mag). This result is in good agreement with
earlier measurements of the far-UV background, and should not include any
significant contribution from airglow. We present our findings as a warning to
other groups who may use the STIS far-UV camera to observe faint extended
targets, and to demonstrate how this measurement may be properly obtained with
STIS.Comment: 7 pages, Latex. 4 figures. Uses corrected version of emulateapj.sty
and apjfonts.sty (included). Accepted for publication in A
Short-term relationship between solar irradiances and equatorial peak electron densities
[1] The short-term relationship of the equatorial peak electron density and the solar short-wavelength irradiance is examined using foF2 observations from Jicamarca, Peru and recent solar irradiance measurements from satellites. Solar soft X-ray measurements from both the Student Nitric Oxide Explorer (SNOE) ( 1998 - 2000) and Thermosphere Ionosphere Mesosphere Energetics Dynamics ( TIMED) ( 2002 - 2004) satellites as well as extreme ultraviolet (EUV) measurements from the TIMED satellite are used. Soft X-rays show similar or higher correlation with foF2 at short timescales ( 27 days or less) than EUV does, although the EUV correlation is higher for longer periods. For the short-term variations, both SNOE and TIMED observations have a higher correlation in the morning ( similar to 0.46) than in the afternoon ( similar to 0.1). In the afternoon, SNOE observations have a higher correlation ( similar to 0.2) with foF2 than the TIMED observations ( similar to 0.1 correlation), which may be due to differences in the solar cycle. At morning times, foF2 has a similar to 27-day variation, consistent with the solar rotation rate. After noon, but not in the morning, a similar to 13.5-day variation consistently appears in foF2. This similar to 13.5-day variation is attributed to geomagnetic influences
From Heisenberg matrix mechanics to EBK quantization: theory and first applications
Despite the seminal connection between classical multiply-periodic motion and
Heisenberg matrix mechanics and the massive amount of work done on the
associated problem of semiclassical (EBK) quantization of bound states, we show
that there are, nevertheless, a number of previously unexploited aspects of
this relationship that bear on the quantum-classical correspondence. In
particular, we emphasize a quantum variational principle that implies the
classical variational principle for invariant tori. We also expose the more
indirect connection between commutation relations and quantization of action
variables. With the help of several standard models with one or two degrees of
freedom, we then illustrate how the methods of Heisenberg matrix mechanics
described in this paper may be used to obtain quantum solutions with a modest
increase in effort compared to semiclassical calculations. We also describe and
apply a method for obtaining leading quantum corrections to EBK results.
Finally, we suggest several new or modified applications of EBK quantization.Comment: 37 pages including 3 poscript figures, submitted to Phys. Rev.
Recommended from our members
Daily Variability in the Terrestrial UV Airglow
New capability for observing conditions in the upper atmosphere comes with the implementation of global ultraviolet (UV) imaging from geosynchronous orbit. Observed by the NASA GOLD mission, the emissions of atomic oxygen (OI) and molecular nitrogen (N2) in the 133–168-nm range can be used to characterize the behavior of these major constituents of the thermosphere. Observations in the ultraviolet from the first 200 days of 2019 indicate that the oxygen emission at 135.6 nm varies much differently than the broader Lyman-Birge-Hopfield (LBH) emission of N2. This is determined from monitoring the average instrument response from two roughly 1000 km2 areas, well separated from one another, at the same time of each day. Variations in the GOLD response to UV emissions in the monitored regions are determined, both in absolute terms and relative to a running 7-day average of GOLD measurements. We find that variations in N2 emissions in the two separate regions are significantly correlated, while oxygen emissions, observed in the same fixed geographic regions at the same universal time each day, exhibit a much lower correlation, and exhibit no correlation with the N2 emissions in the same regions. This indicates that oxygen densities in the airglow-originating altitude range of 150–200 km vary independently from the variations in nitrogen, which are so well correlated across the dayside to suggest a direct connection to variation in solar extreme-UV flux. The relation of the atomic oxygen variations to solar and geomagnetic activity is also shown to be low, suggesting the existence of a regional source that modifies the production of atomic oxygen in the thermosphere.</p
In Vitro Studies Evaluating Leaching of Mercury from Mine Waste Calcine Using Simulated Human Body Fluids
In vitro bioaccessibility (IVBA) studies were carried out on samples of mercury (Hg) mine-waste calcine (roasted Hg ore) by leaching with simulated human body fluids. The objective was to estimate potential human exposure to Hg due to inhalation of airborne calcine particulates and hand-to-mouth ingestion of Hg-bearing calcines. Mine waste calcines collected from Hg mines at AlmadĂ©n, Spain, and Terlingua, Texas, contain Hg sulfide, elemental Hg, and soluble Hg compounds, which constitute primary ore or compounds formed during Hg retorting. Elevated leachate Hg concentrations were found during calcine leaching using a simulated gastric fluid (as much as 6200 ÎŒg of Hg leached/g sample). Elevated Hg concentrations were also found in calcine leachates using a simulated lung fluid (as much as 9200 ÎŒg of Hg leached/g), serum-based fluid (as much as 1600 ÎŒg of Hg leached/g), and water of pH 5 (as much as 880 ÎŒg of Hg leached/g). The leaching capacity of Hg is controlled by calcine mineralogy; thus, calcines containing soluble Hg compounds contain higher leachate Hg concentrations. Results indicate that ingestion or inhalation of Hg mine-waste calcine may lead to increased Hg concentrations in the human body, especially through the ingestion pathway
- âŠ