27,056 research outputs found

    Satellite detection of phytoplankton export from the mid-Atlantic Bight during the 1979 spring bloom

    Get PDF
    Analysis of Coastal Zone Color Scanner (CZCS) imagery confirms shipboard and in situ moored fluorometer observations of resuspension of near-bottom chlorophyll within surface waters (1 to 10 m) by northwesterly wind events in the mid-Atlantic Bight. As much as 8 to 16 micrograms chl/l are found during these wind events from March to May, with a seasonal increase of algal biomass until onset of stratification of the water column. Rapid sinking or downwelling apparently occurs after subsequent wind events, however, such that the predominant surface chlorophyll pattern is approx. 0.5 to 1.5 micrograms/l over the continental shelf during most of the spring bloom. Perhaps half of the chlorophyll increase observed by satellite during a wind resuspension event represents in-situ production during the 4 to 5 day interval, with the remainder attributed to accumulation of algal biomass previously produced and temporarily stored within near-bottom water. Present calculations suggest that about 10% of the primary production of the spring bloom may be exported as ungrazed phytoplankton carbon from mid-Atlantic shelf waters to those of the continental slope

    Remote sensing of directional wave spectra using the surface contour radar

    Get PDF
    A unique radio-oceanographic remote sensing instrument was developed. The 36 GHz airborne Surface Contour Radar (SCR) remotely produces a real-time topographical map of the sea surface beneath the aircraft. It can routinely produce ocean directional wave spectra with off-line data processing. The transmitter is a coherent dual-frequency device that uses pulse compression to compensate for the limited available power at Ka band. The radar has selectable pulse widths of 1, 2, 4, and 10 nanoseconds. The transmitting antenna is a 58 lambda horn fed dielectric lens whose axis is parallel to the longitudinal axis of the aircraft. It illuminates an elliptical mirror which is oriented 45 deg to the lens' longitudinal axis to deflect the beam towards the region beneath the aircraft. The mirror is oscillated in a sinusoidal fashion through mechanical linkages driven to a variable speed motor to scan the transmitter beam (1.2 deg X 1.2 deg) with + or - 16 deg of the perpendicular to the aircraft wings in the plane perpendicular to the aircraft flight direction

    The time resolved measurement of ultrashort THz-band electric fields without an ultrashort probe

    Get PDF
    The time-resolved detection of ultrashort pulsed THz-band electric field temporal profiles without an ultrashort laser probe is demonstrated. A non-linear interaction between a narrow-bandwidth optical probe and the THz pulse transposes the THz spectral intensity and phase information to the optical region, thereby generating an optical pulse whose temporal electric field envelope replicates the temporal profile of the real THz electric field. This optical envelope is characterised via an autocorrelation based FROG measurement, hence revealing the THz temporal profile. The combination of a narrow-bandwidth, long duration, optical probe and self-referenced FROG makes the technique inherently immune to timing jitter between the optical probe and THz pulse, and may find particular application where the THz field is not initially generated via ultrashort laser methods, such as the measurement of longitudinal electron bunch profiles in particle accelerators.Comment: 7 pages, 3 figures, submitted to AP

    Decentralized Supply Chain Formation: A Market Protocol and Competitive Equilibrium Analysis

    Full text link
    Supply chain formation is the process of determining the structure and terms of exchange relationships to enable a multilevel, multiagent production activity. We present a simple model of supply chains, highlighting two characteristic features: hierarchical subtask decomposition, and resource contention. To decentralize the formation process, we introduce a market price system over the resources produced along the chain. In a competitive equilibrium for this system, agents choose locally optimal allocations with respect to prices, and outcomes are optimal overall. To determine prices, we define a market protocol based on distributed, progressive auctions, and myopic, non-strategic agent bidding policies. In the presence of resource contention, this protocol produces better solutions than the greedy protocols common in the artificial intelligence and multiagent systems literature. The protocol often converges to high-value supply chains, and when competitive equilibria exist, typically to approximate competitive equilibria. However, complementarities in agent production technologies can cause the protocol to wastefully allocate inputs to agents that do not produce their outputs. A subsequent decommitment phase recovers a significant fraction of the lost surplus

    The cohort of the atomic bomb survivors: major basis of radiation safety regulations

    Get PDF
    Since 1950 about 87 000 A-bomb survivors from Hiroshima and Nagasaki have been monitored within the framework of the Life Span Study, to quantify radiation-induced late effects. In terms of incidence and mortality, a statistically significant excess was found for leukemia and solid tumors. In another major international effort, neutron and gamma radiation doses were estimated, for those survivors (Dosimetry System DS02). Both studies combined allow the deduction of risk coefficients that serve as a basis for international safety regulations. As an example, current results on all solid tumors combined suggest an excess relative risk of 0.47 per Sievert for an attained age of 70 years, for those who were exposed at an age of 30 years. After exposure to an effective dose of one Sievert the solid tumor mortality would thus be about 50% larger than that expected for a similar cohort not exposed to any ionizing radiation from the bombs

    Disease activity flares and pain flares in an early rheumatoid arthritis inception cohort; characteristics, antecedents and sequelae

    Get PDF
    © 2019 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.Background: RA flares are common and disabling. They are described in terms of worsening inflammation but pain and inflammation are often discordant. To inform treatment decisions, we investigated whether inflammatory and pain flares are discrete entities. Methods: People from the Early RA Network (ERAN) cohort were assessed annually up to 11 years after presentation (n = 719, 3703 person-years of follow up). Flare events were defined in 2 different ways that were analysed in parallel; DAS28 or Pain Flares. DAS28 Flares satisfied OMERACT flare criteria of increases in DAS28 since the previous assessment (≥1.2 points if active RA or ≥ 0.6 points if inactive RA). A ≥ 4.8-point worsening of SF36-Bodily Pain score defined Pain Flares. The first documented episode of each of DAS28 and Pain Flare in each person was analysed. Subgroups within DAS28 and Pain Flares were determined using Latent Class Analysis. Clinical course was compared between flare subgroups. Results: DAS28 (45%) and Pain Flares (52%) were each common but usually discordant, with 60% of participants in DAS28 Flare not concurrently in Pain Flare, and 64% of those in Pain Flare not concurrently in DAS28 Flare. Three discrete DAS28 Flare subgroups were identified. One was characterised by increases in tender/swollen joint counts (14.4%), a second by increases in symptoms (13.1%), and a third displayed lower flare severity (72.5%). Two discrete Pain Flare subgroups were identified. One occurred following low disease activity and symptoms (88.6%), and the other occurred on the background of ongoing active disease and pain (11.4%). Despite the observed differences between DAS28 and Pain Flares, each was associated with increased disability which persisted beyond the flare episode. Conclusion: Flares are both common and heterogeneous in people with RA. Furthermore our findings indicate that for some patients there is a discordance between inflammation and pain in flare events. This discrete flare subgroups might reflect different underlying inflammation and pain mechanisms. Treatments addressing different mechanisms might be required to reduce persistent disability after DAS28 and Pain Flares.Peer reviewedFinal Published versio

    Statistics of Solar Wind Electron Breakpoint Energies Using Machine Learning Techniques

    Get PDF
    Solar wind electron velocity distributions at 1 au consist of a thermal "core" population and two suprathermal populations: "halo" and "strahl". The core and halo are quasi-isotropic, whereas the strahl typically travels radially outwards along the parallel and/or anti-parallel direction with respect to the interplanetary magnetic field. With Cluster-PEACE data, we analyse energy and pitch angle distributions and use machine learning techniques to provide robust classifications of these solar wind populations. Initially, we use unsupervised algorithms to classify halo and strahl differential energy flux distributions to allow us to calculate relative number densities, which are of the same order as previous results. Subsequently, we apply unsupervised algorithms to phase space density distributions over ten years to study the variation of halo and strahl breakpoint energies with solar wind parameters. In our statistical study, we find both halo and strahl suprathermal breakpoint energies display a significant increase with core temperature, with the halo exhibiting a more positive correlation than the strahl. We conclude low energy strahl electrons are scattering into the core at perpendicular pitch angles. This increases the number of Coulomb collisions and extends the perpendicular core population to higher energies, resulting in a larger difference between halo and strahl breakpoint energies at higher core temperatures. Statistically, the locations of both suprathermal breakpoint energies decrease with increasing solar wind speed. In the case of halo breakpoint energy, we observe two distinct profiles above and below 500 km/s. We relate this to the difference in origin of fast and slow solar wind.Comment: Published in Astronomy & Astrophysics, 11 pages, 10 figure

    The 3D printing of a polymeric electrochemical cell body and its characterisation

    No full text
    An undivided flow cell was designed and constructed using additive manufacturing technology and its mass transport characteristics were evaluated using the reduction of ferricyanide, hexacyanoferrate (III) ions at a nickel surface. The dimensionless mass transfer correlation Sh = aRebScdLee was obtained using the convective-diffusion limiting current observed in linear sweep voltammetry; this correlation compared closely with that reported in the literature from traditionally machined plane parallel rectangular flow channel reactors. The ability of 3D printer technology, aided by computational graphics, to rapidly and conveniently design, manufacture and re-design the geometrical characteristics of the flow cell ishighlighted

    The space physics environment data analysis system (SPEDAS)

    Get PDF
    With the advent of the Heliophysics/Geospace System Observatory (H/GSO), a complement of multi-spacecraft missions and ground-based observatories to study the space environment, data retrieval, analysis, and visualization of space physics data can be daunting. The Space Physics Environment Data Analysis System (SPEDAS), a grass-roots software development platform (www.spedas.org), is now officially supported by NASA Heliophysics as part of its data environment infrastructure. It serves more than a dozen space missions and ground observatories and can integrate the full complement of past and upcoming space physics missions with minimal resources, following clear, simple, and well-proven guidelines. Free, modular and configurable to the needs of individual missions, it works in both command-line (ideal for experienced users) and Graphical User Interface (GUI) mode (reducing the learning curve for first-time users). Both options have “crib-sheets,” user-command sequences in ASCII format that can facilitate record-and-repeat actions, especially for complex operations and plotting. Crib-sheets enhance scientific interactions, as users can move rapidly and accurately from exchanges of technical information on data processing to efficient discussions regarding data interpretation and science. SPEDAS can readily query and ingest all International Solar Terrestrial Physics (ISTP)-compatible products from the Space Physics Data Facility (SPDF), enabling access to a vast collection of historic and current mission data. The planned incorporation of Heliophysics Application Programmer’s Interface (HAPI) standards will facilitate data ingestion from distributed datasets that adhere to these standards. Although SPEDAS is currently Interactive Data Language (IDL)-based (and interfaces to Java-based tools such as Autoplot), efforts are under-way to expand it further to work with python (first as an interface tool and potentially even receiving an under-the-hood replacement). We review the SPEDAS development history, goals, and current implementation. We explain its “modes of use” with examples geared for users and outline its technical implementation and requirements with software developers in mind. We also describe SPEDAS personnel and software management, interfaces with other organizations, resources and support structure available to the community, and future development plans.Published versio
    corecore