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Abstract: Asthma is an increasingly common respiratory condition characterized by reversible airway obstruction, bronchial hyper-
responsiveness and airway inflammation with a clear unmet need for more effective therapy. Eosinophilic asthma is a phenotype of the 
condition that features increased blood or sputum eosinophils whose numbers correlate with disease severity. Several lines of evidence 
are now emerging, which implicate increased persistence of eosinophils in the lungs of patients with asthma as a consequence of inhi-
bition of and defects in the apoptotic process, together with impaired apoptotic cell removal mechanisms. This article will update our 
knowledge of the mechanisms controlling eosinophil apoptosis and clearance, together with evidence implicating defects in apoptosis 
and pro-inflammatory cell removal in asthma. Recent developments in novel therapies for asthma that target eosinophil apoptotic and/or 
clearance pathways will also be discussed.
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Introduction
Asthma is now one of the most common chronic 
diseases in developed countries and is character-
ized by reversible airway obstruction, airway hyper-
 responsiveness (AHR) and airway inflammation. 
Asthma pathology results in fundamental struc-
tural changes to the airway including goblet cell 
 hyperplasia, airway smooth muscle hypertrophy 
and subepithelial fibrosis.1 Inhaled glucocorticoids 
(GC) remain the gold standard of therapy for asthma 
because of their potent anti-inflammatory properties 
that primarily reduce AHR, disease exacerbations 
and hospitalizations, while improving lung func-
tion and quality of life.2 However, GC have well-
 documented side effects and they are symptomatic 
medications that require lifetime therapy for the 
majority of patients with asthma, whose symptoms 
usually return upon GC withdrawal.3 Moreover, con-
cerns remain over patient compliance to therapy, 
while variations in the clinical response of asthmat-
ics to inhaled GC therapy are common. A significant 
subgroup of asthmatic patients respond poorly or not 
at all to high-dose inhaled or systemic GC treatment.4 
These considerations highlight the need for the devel-
opment of more effective and safe anti-inflammatory 
therapy for asthma.

Eosinophil involvement in inflammatory condi-
tions affecting the skin, gastrointestinal tract and upper 
and lower airways is well documented.5  Eosinophilic 
asthma is a phenotype of the condition characterized 
by increased blood or sputum  eosinophils whose num-
bers correlate with disease severity.6 Infiltrating  tissue 
eosinophils release their potent pro- inflammatory 
arsenal, including granule-derived basic  proteins, 
lipid mediators, cytokines and chemokines. These 
contribute to airway inflammation and lung tissue 
remodeling that includes epithelial cell damage and 
loss, airway thickening, fibrosis and angiogenesis.7 
More recent evidence suggests that in addition to 
their role as degranulating effector cells, eosinophils 
have the capacity to act as antigen-presenting, cells 
resulting in T cell proliferation and activation, thereby 
propagating inflammatory responses.8,9

This article will update our knowledge of the mech-
anisms controlling eosinophil apoptosis together with 
the evidence implicating defects in apoptosis and pro-
inflammatory cell removal in asthma. Recent devel-
opments in novel therapies for asthma that  target 

eosinophil apoptotic and/or clearance pathways will 
also be discussed.

Role of eosinophil Apoptosis in Asthma
Asthma represents one of the most prevalent diseases 
affecting humans, for which eosinophils have an 
established role in disease pathogenesis. In healthy 
individuals, eosinophils are present in the circula-
tion in low numbers and are rarely found in the lung, 
being mostly confined to the tissues surrounding the 
gut. Eosinophil accumulation in the asthmatic lung 
is complex, involving their maturation in and release 
from the bone marrow, adhesion to and transmigration 
through the post-capillary endothelium, and then their 
chemotaxis to and activation/degranulation at inflam-
matory foci.10 The processes controlling eosinophil 
accumulation are of obvious importance and repre-
sent potential therapeutic targets for antagonism of 
their accumulation in asthma.11 However, apoptosis 
and the disposal of apoptotic cells by phagocytic 
removal (efferocytosis) is a vital aspect of inflamma-
tion resolution in all multi-cellular  organisms. Thus, a 
balance in the tissue microenvironment between pro- 
and anti-apoptotic signals is likely to greatly influence 
the load of lung eosinophils in the asthmatic lung. 
Eosinophils have a limited life-span. In the circula-
tion for 8–18 hours and in the tissues for 3–4 days, 
as like neutrophils they are terminally- differentiated 
cells programmed to undergo apoptosis in the 
absence of viability-enhancing stimuli. Eosinophil 
persistence in the airways is enhanced by the pres-
ence of several asthma-relevant cytokines that pro-
long eosinophil survival by inhibition of apoptosis. 
The roles of IL-3, IL-5, IL-9, IL-13, IL-15 and GM-
CSF in this regard are well established,12–15 and there 
is ample evidence that all of these elements are pres-
ent in the asthmatic lung in significant  quantities.16 
Thymic stromal protein (TSLP), IL-25 and IL-33 
represent a triad of  cytokines released by airway 
epithelial cells in response to various environmental 
stimuli or by cellular damage. They act in concert to 
drive Th2 polarization through overlapping mecha-
nisms causing remodeling and pathological changes 
in the airway walls, suggesting pivotal roles in the 
pathophysiology of asthma. All 3 have been shown 
to have a number of effects on eosinophil function, 
including enhancement of their viability through the 
inhibition of apoptosis.17–19 Eosinophil interactions 
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with proteins of the extracellular matrix are likely 
to contribute to their persistence within the tissues. 
For example, integrin-mediated eosinophil adhesion 
to fibronectin20,21 results in the autocrine production 
of viability-enhancing cytokines GM-SCF, IL-3 and 
IL-5. These interactions between multiple cytok-
ines and extracellular matrix components antagonize 
eosinophil programmed cell death, thereby prolong-
ing their longevity for weeks.

Nitric oxide (NO) released from human tissues 
is associated with pro-inflammatory effects with 
potentially important implications in asthma, where 
levels in exhaled air correlate with clinical symp-
toms of asthma, sputum eosinophilia and markers 
of eosinophil activation.22,23 In addition to potential 
pro-inflammatory effects, there is evidence that NO 
induces in vitro human eosinophil apoptosis both in 
the absence and presence of IL-5 or GM-CSF via 
c-Jun-N-terminal kinase (JNK)24 or caspase 6 and 3 
activation.25 More recently, NO-induced eosinophil 
apoptosis has been shown to be mediated via reac-
tive oxygen species, JNK and late mitochondrial 
permeability transition.26 NO release in the asth-
matic lung may act as a counter regulatory mecha-
nism to limit eosinophilia in inflamed lungs, indeed 
the degree of apoptosis in sputum eosinophils was 
found to positively correlate with exhaled NO in 
children.27

The desire to understand how the process of 
apoptosis can be harnessed in the quest for novel 
asthma therapy has led to much interest in  furthering 
our understanding of the triggers and intracellu-
lar mechanisms controlling apoptosis induction in 
human eosinophils.28,29 For example, several studies 
have demonstrated that ligation of membrane recep-
tors including Fas (CD95)30,31 CD69,32 siglec-8,33,34 
CD3035 and CD4536 induce eosinophil apoptosis in 
vitro. Interestingly, eosinophil expression of the latter 
receptor is elevated in patients with asthma compared 
with non-asthmatic controls.37 Mice sensitised with 
ovalbumin (OVA) develop lung inflamation includ-
ing airway eosinophilia following an OVA inhala-
tion challenge. This process represents a widely used 
animal model of asthma. The administration of anti-
Siglec-5 accelerates eosinophil apoptosis in an OVA 
murine asthma model, leading to resolution of allergic 
pulmonary inflammation.38 Indeed, siglec-8 expres-
sion appears restricted to human eosinophils, mast 

cells and basophils, thereby generating great interest 
in targeting this molecule as a potential treatment for 
eosinophil and mast-cell-driven diseases.39

Inhaled GC are a first-line therapy for asthma 
due to their potent anti-inflammatory properties 
that primarily result in reduced numbers of airway 
inflammatory cells and their associated mediators. 
In addition, GC induce apoptosis in peripheral blood 
eosinophils,40 as well as in tissue eosinophils resi-
dent in nasal polyp tissue sections,41 suggesting that 
 eosinophil apoptosis induction by GC might be rel-
evant to their anti-inflammatory effects in asthma. 
The intracellular signaling mechanisms by which 
GC induce apoptosis in human eosinophils include 
the involvement of caspases and release of mito-
chondrial  cytochrome C.42 Studies with eosino-
phils derived from both healthy and asymptomatic 
allergic individuals have demonstrated involve-
ment of  caspase-3 and -8 in glucocorticoid-induced 
 apoptosis.43 In contrast, another study reported that 
the GC dexamethasone induced eosinophil apoptosis 
that was not associated with specific caspase-3 and -8 
activity in eosinophils, compared with spontaneous 
apoptosis in these cells.44 Our own findings demon-
strate that different caspase pathways are involved 
in controlling receptor-ligation mediated apoptosis-
induction in human eosinophils.45 While caspases 
are key regulators of apoptosis in diverse human 
cells, oxidant-induced mitochondrial injury associ-
ated with translocation of the pro-apoptotic protein 
Bax to the mitochondria has been shown to be piv-
otal in eosinophil apoptosis. This effect was medi-
ated by GC-induced prolonged activation of c-Jun 
NH2-terminal kinase that was, in turn, inhibited by 
GM-CSF.46 Other factors important in the control 
of apoptosis and caspase activation in many cellu-
lar systems include the Bcl-2 family of proteins.47 
There are several reports demonstrating constitutive 
expression of Bcl-2,48,49 or Bax and Bcl-x50 by human 
eosinophils, whereas a decrease in Bcl-xL messen-
ger RNA and protein levels was found to be asso-
ciated with eosinophil apoptosis.51 The intracellular 
pathways by which viability-enhancing cytokines act 
in eosinophils include triggering of PI3K/Akt/ERK 
signaling, preventing Bax activation through a Pin1-
dependent process. NFkB-mediated transcriptional 
upregulation of anti-apoptotic Bcl-2 family mem-
bers, as well as inhibitors of apoptosis such as Mcl-1 
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and c-IAP, are also likely to contribute to eosinophil 
survival.28

phagocytic Recognition
Though much is spoken of the importance of apopto-
sis induction in homeostasis, its benefits arise only in 
conjunction with the efferocytosis of these apoptotic 
cells by neighboring cells. The clearance of dying cells 
represents a fundamental process serving multiple 
functions in the regulation of normal tissue turnover 
and homeostasis. Failure or inhibition of these clear-
ance mechanisms permits the apoptotic cells to enter 
into secondary necrosis, which results in injurious 
perpetuation of the inflammatory response.52 Indeed, 
defects in apoptosis and/or subsequent efferocytosis 
of pro-inflammatory cells are increasingly recog-
nized in conditions as diverse as autoimmunity53 and 
chronic inflammatory diseases of the lung.54  Evidence 
for the rationale of targeting apoptosis/ efferocytosis 
in respiratory disease is provided by studies that dem-
onstrated defects in recognition of apoptotic cells by 
alveolar macrophages from patients with COPD55 or 
chronic asthma.56 Our own clinical study57 and those 
of others58,59 provide further “real-world” evidence 
that apoptosis induction in eosinophils and their 
subsequent efferocytosis is a rational avenue for the 
development of novel therapies for asthma.

Various studies in macrophages60,61 have elucidated 
the means utilized in the recognition and engulfment 
of apoptotic cells. These include an uncharacterized 
lectin-dependent interaction;62 a charge-sensitive 
process involving the CD36/vitronectin receptor 
complex interacting with unknown moieties on apop-
totic neutrophils’ surfaces via a thrombospondin 
bridge;63,64 a stereo specific recognition of phosphati-
dylserine (PS) that is exposed on the surface of the 
apoptotic cell after loss of membrane asymmetry,65,66 
redistribution of PS on the phagocyte,67 macrophage 
scavenger receptors,68,69 CD14,70,71 CD68,72 ABC1 
transporter,73 Dock180, beta-1-integrins,74 CD4475 
and opsinization by MFG-E8, C1q, Mannonse bind-
ing lectin (MBL) and E6 (reviewed in Elliott and 
Ravichandran).76 It is been known for many years that 
a number of non-professional phagocytes, including 
dendritic cells, lung fibroblasts, and smooth muscle 
cells, also have the capacity to recognize and ingest 
apoptotic cells.77 Although the bronchial epithelium is 
generally considered to be the target for cell  damage 

and loss by eosinophil-derived mediators, we char-
acterized the capacity for normal and small airway 
human bronchial epithelial cells to specifically rec-
ognize and phagocytose apoptotic, but not freshly 
isolated eosinophils.78 Recognition and phagocytosis 
of apoptotic eosinophils was a specific event under 
the control of integrin, lectin and phosphatidylserine 
membrane receptors. Importantly, we also demon-
strated that the GC dexamethasone increased both the 
percentage of airway epithelial cells (AEC) engulfing 
apoptotic eosinophils and, in particular, the number 
of apoptotic eosinophils ingested by each epithelial 
cell.79 These findings add a new dimension to the 
anti-inflammatory effects of GC. We also demon-
strated that actin rearrangement is involved in the 
efferocytosis of apoptotic eosinophils by AEC, and 
that the phagocytic capacity of cytokine-stimulated 
small and large AEC was approximately half that of 
human monocyte-derived macrophages. Intriguingly, 
the AEC did not phagocytose apoptotic neutrophils,80 
and in screening epithelial cell lines derived from 
alveolar (A549), mammary (ZR-75-1) and colon 
(HT-29) tissues, this selective efferocytosis of apop-
totic eosinophils was consistent. Indeed, this prefer-
ential uptake of eosinophils was similarly observed 
in our monocyte-derived-macrophages, which exhib-
ited consistently higher phagocytic uptake of apop-
totic eosinophils compared with uptake of apoptotic 
neutrophils. Given the extent of the lung epithelium 
and that LPS-dependent phagocytosis of apoptotic 
cells by alveolar macrophages is greatly impaired in 
patients with chronic asthma,54 bronchial epithelial 
cells may prove to be vital in the clearance of apop-
totic eosinophils.

Targeting Apoptosis in Asthma
Taken together, these observations indicate potential 
avenues for the development of novel therapeutic 
approaches to target eosinophil-induced inflammation 
in asthma, particularly in those patients who exhibit 
GC resistance. IL-12 induces apoptosis in human 
eosinophils, likely explaining its ability to decrease 
tissue eosinophilia in murine models of allergic 
inflammation.81 Furthermore, the level of IL-12 mRNA 
expression in the airways of asthmatic subjects is sig-
nificantly lower than that in non-asthmatic controls, 
and levels significantly increased following treatment 
with GC.82 IL-12 would, therefore, appear to be a 
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good candidate for the treatment of asthma. However, 
while a clinical study demonstrated that treatment of 
asthmatic patients with rhIL-12 reduced sputum and 
blood eosinophil numbers, no significant effect was 
observed on either AHR or the late-asthmatic response 
to an inhaled antigen  challenge.83 The bronchodilator 
theophylline is widely used in asthma therapy and 
has also been shown to trigger apoptosis in human 
eosinophils, an effect that may contribute to its anti-
inflammatory properties.84 Thus, there is interest in the 
development of more specific phosphodiesterase type 
4 (PDE4) inhibitors with enhanced bronchodilator and 
anti-inflammatory effects.  However, side effects such 
as nausea and vomiting have been problematic for 
some agents in this class.85

Statins reduce cholesterol levels by inhibiting 
the first enzyme in the cholesterol pathway, namely 
3- hydroxy-3-methylglutaryl coenzyme A (HMG-
CoA) reductase, and have established effectiveness 
in the treatment of atherosclerotic disease. They also 
exhibit anti-inflammatory properties, most likely by 
inhibiting the prenylation of signaling molecules. 
In other words, they are no longer anchored to the 
cell membrane, with subsequent down-regulation 
of gene expression, thereby reducing cytokine or 
chemokine levels and adhesion molecule  expression.86 
 Furthermore, the mevalonate metabolic pathway is 
reversibly inhibited by statins and is known to be 
integral to cell membrane lipid raft formation, which 
is an essential process for immune system autocrine 
signaling, MHC expression, and inflammatory cell 
interactions, including antigen presentation.87  Statins 
also induce apoptosis in a variety of cell types in vitro, 
including rheumatoid synovial cells, smooth muscle 
cells and cardiac monocytes thereby contributing to 
their pleiotropic benefits. Statin-induced apoptosis 
appears to be executed via alteration in isoprenoid syn-
thesis with resultant tyrosine phosphorylation, causing 
a rise in cytosolic calcium that in turn activates cal-
pain. The latter decreases the Bcl-2/Bax ratio, leading 
to mitochondrial cytochrome c release and activation 
of caspase-9, followed by activation of caspase-3.88 
In vitro, clinically-relevant concnetrations of fluvas-
tatin and lovastatin inhibited eosinophil adhesion to 
ICAM-1 under physiological shear stress conditions.89 
These immunomodulatory effects may be of potential 
benefit in asthma; in particular, their potential effect 
upon eosinophil function and  survival are of interest 

suggesting that statins may prove effective anti-
inflammatory treatments for asthma.90  Administration 
of simvastatin to sensitised mice immediately before 
OVA challenge attenuated the inflammatory airway 
response together with a concomitant reduction in 
pro-inflammatory cytokine  levels, eosinophil num-
bers and bronchoalveolar lavage IL-5 levels.91 These 
observations, coupled with the finding that statins 
directly inhibit T- lymphocyte differentiation and 
function,92 led the authors to suggest that modifica-
tion of the T-helper subset had resulted in reduction 
in airway  eosinophilia. However, another interpreta-
tion is that a direct action of simvastatin on airway 
eosinophil apoptisis and efferocytosis by alveolar 
macrophages could have contributed to the reduc-
tion in airway eosinophilia. Furthermore, simvasta-
tin also inhibited allergic asthmatic symptoms and 
numbers of macrophages, neutrophils, and eosino-
phils in bronchoalveolar lavage fluid in a mouse 
model of asthma.93 Although these studies in murine 
asthma models suggest that statins may be of benefit 
to patients with asthma, this can only be confirmed by 
well-conducted randomized-clinical trials.94 To date, 
several clinical studies have examined the  utility of 
statins in asthma patients, but their results are not con-
sistent. Indeed, a recent systematic literature review 
of the subject reported that while statins may reduce 
airway inflammation in asthmatics, this does not 
translate into significant positive effects on symptoms 
including improvements in lung function.95 Further 
clinical trials may establish statins as effective co-
therapies in asthma and establish whether they might 
benefit patients with more chronic severe disease that 
may be resistant to treatment with corticosteroids, or 
in more targeted patient populations, such as obese 
asthmatics.96

Bronchoconstriction in asthma is commonly 
relieved with β2-agonists such as salbutamol,  fenoterol, 
formoterol or salmeterol. However, their over-use is 
associated with detrimental effects,97 some of which 
may be related to the observation that clinically rele-
vant concentrations of salbutamol reduced eosinophil 
apoptosis via the cannonical β(2)-receptor-adenylyl 
cyclase-cAMP-protein kinase A pathway.98

We have known for many years that IL-5 plays a 
crucial role in the development and release of eosino-
phils from the bone marrow, their enhanced adhesion 
to endothelial cells lining the post-capillary venules, 
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and their activation, secretion and prolonged sur-
vival through apoptosis inhibition in the tissues.99,100 
IL-5 was therefore identified as a promising target 
to prevent or blunt eosinophil-mediated inflamma-
tion in patients with asthma and other eosinophil-
related conditions, leading to the development of 
humanized anti-IL-5 mAb such as mepolizumab 
and reslizumab or benralizumab, a mAb against 
human IL-5Ra.101 Early clinical trials with the anti-
IL-5 biologic mepolizumab in patients with mild 
to severe asthma reported significant reductions in 
blood and sputum eosinophil numbers, but clinical 
outcomes such as improvements in lung function 
were disappointing, most likely because subjects 
were recruited on the basis of clinical and physio-
logical characteristics that did not specify the pres-
ence of eosinophilic airway inflammation.101 More 
recently a number of studies have demonstrated that 
mepolizumab treatment of patients who manifested 
eosinophilic asthma not only reduced eosinophil 
numbers in the blood and sputum, but also resulted 
in a significant reduction in asthma exacerba-
tions.102–104 Benralizumab is a novel, humanized 
afucosylated IgG1k mAb, indicated in the potential 
treatment of asthma and COPD. It binds to a distinct 
epitope within the extracellular domain of recom-
binant human IL-5Ra. At the time of publication, 
benralizumab was undergoing phase II clinical tri-
als in both the specified indications (ClinicalTrials.
gov identifiers: NCT01238861 and NCT01227278). 
Other anti-IL-5 mAb act by neutralizing the effects 
of IL-5. Benralizumab, however, targets the effec-
tor cells, mainly eosinophils and basophils, many of 
whose functions are driven by IL-5. Afucosylation 
is associated with enhanced antibody-dependent 
cell cytotoxicity, and benralizumab was found to 
induce apoptosis in eosinophils and basophils. Tis-
sue eosinophils resident in bronchial biopsies of 
patients with mild atopic asthma exhibited intense 
immune positivity for benralizumab in contrast to 
resident mast cells, which were negative.105 These 
findings indicate that benralizumab binds human 
lung tissue-resident eosinophils expressing IL-
5Ra, and could delete these cells through apopto-
sis-induction, thereby acting as a potential asthma 
 therapeutic.106 Indeed, a phase-1 study in subjects 
with mild asthma demonstrated that intravenous 
benralizumab (0.3–3.0 mg/kg) rapidly induced 

near-total depletion of peripheral blood eosinophils 
while exhibiting an adequate safety profile and 
dose-proportional pharmacokinetics.107

conclusion
Our knowledge concerning the mechanisms con-
trolling eosinophil apoptosis and their subsequent 
phagocytic disposal is now considerable. GC and 
some novel therapies with potential utility in asthma 
such as statins or benralizumab appear to have an 
eosinophil  apoptosis-inducing dimension to their 
effects.  However, the development of effective and 
safe therapies for asthma patients aimed solely at 
apoptosis induction and/or clearance of tissue eosino-
phils is currently a theoretical rather than practical 
possibility. Other mechanisms, such as transepithe-
lial elimination of eosinophils, may also provide 
novel targets for the safe removal of this important 
pro-inflammatory cell.108
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