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ABSTRACT

Solar wind electron velocity distributions at 1 au consist of a thermal ‘core’ population and two suprathermal populations: ‘halo’ and
‘strahl’. The core and halo are quasi-isotropic, whereas the strahl typically travels radially outwards along the parallel or anti-parallel
direction with respect to the interplanetary magnetic field. Using Cluster-PEACE data, we analyse energy and pitch angle distributions
and use machine learning techniques to provide robust classifications of these solar wind populations. Initially, we used unsupervised
algorithms to classify halo and strahl differential energy flux distributions to allow us to calculate relative number densities, which
are of the same order as previous results. Subsequently, we applied unsupervised algorithms to phase space density distributions over
ten years to study the variation of halo and strahl breakpoint energies with solar wind parameters. In our statistical study, we find
both halo and strahl suprathermal breakpoint energies display a significant increase with core temperature, with the halo exhibiting a
more positive correlation than the strahl. We conclude low energy strahl electrons are scattering into the core at perpendicular pitch
angles. This increases the number of Coulomb collisions and extends the perpendicular core population to higher energies, resulting
in a larger difference between halo and strahl breakpoint energies at higher core temperatures. Statistically, the locations of both
suprathermal breakpoint energies decrease with increasing solar wind speed. In the case of halo breakpoint energy, we observe two
distinct profiles above and below 500 km/s. We relate this to the difference in origin of fast and slow solar wind.
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1. Introduction

Solar wind electron velocity distributions at 1 au consist of three
main populations: the thermal (<50 eV) population, termed the
core, and two suprathermal (∼60–1000 eV) populations termed
the halo and the strahl (Feldman et al. 1975; Maksimovic et al.
2005). The core has an average temperature at 1 au of ∼105 K
(Balogh & Smith 2001) and exhibits a nearly Maxwellian veloc-
ity distribution. At 1 au, the core contains ∼95%-96% of the total
solar wind electron density in slow wind (McComas et al. 1998;
Maksimovic et al. 2005; Štverák et al. 2009) and ∼90% in fast
wind (Štverák et al. 2009). The halo, on the other hand, exhibits a
κ-distribution and forms tails in the total electron velocity distri-
bution. The κ-distribution has a similar shape to the Maxwellian
distribution at low thermal velocities. At speeds greater than
the thermal speed, the κ-distribution decreases as a power law.
The κ-distribution of the halo has a greater temperature than the
Maxwellian distribution of the core (Feldman et al. 1975). The
core and halo are quasi-isotropic populations, whereas the strahl
travels along the interplanetary magnetic field (IMF) and can be
observed in either the parallel or anti-parallel magnetic field di-
rection (Feldman et al. 1978), or in both directions (Gosling et al.
1987; Owens et al. 2017), depending on the IMF topology. There
are also times in which a strahl population is not detectable (An-
derson et al. 2012), particularly in slow solar wind (Gurgiolo &
Goldstein 2017).

The thermal core is thought to form in the corona, as a re-
sult of Coulomb collisions and wave-particle interactions (Pier-
rard et al. 2001; Vocks et al. 2008). Likewise, suprathermal solar
wind electrons originate from the solar corona (Viñas et al. 2000;
Che & Goldstein 2014) and then evolve into the strahl and halo
populations as they travel away from the Sun. The majority of the
halo population is formed by the scattering of strahl electrons via
Coulomb collisions (Horaites et al. 2018) and wave-particle in-
teractions (Gary et al. 1994; Landi et al. 2012; Vasko et al. 2019;
Tong et al. 2019; Verscharen et al. 2019) as it travels outwards
in the solar wind (Saito & Gary 2007; Pagel et al. 2007). The
strong field-aligned nature of the strahl occurs due to adiabatic
focusing effects (Owens & Forsyth 2013), which are particularly
prevalent at smaller distances from the Sun due to larger gra-
dients in magnetic field strength. Adiabatic focusing describes
the change in pitch angle experienced by an electron that slowly
travels into a region with a stronger or weaker magnetic field. Ig-
noring any scattering effects, an electron’s pitch angle evolution
with heliocentric distance then depends on the conservation of its
magnetic moment. This conservation law results in a decrease in
pitch angle with increasing heliocentric distance (Parker 1963;
Owens et al. 2008).

At 1 au, suprathermal electrons do not undergo any signifi-
cant Coulomb collisions (Vocks et al. 2005). This suggests that
adiabatic focusing is the dominant mechanism experienced by
these electrons. Under this assumption, the strahl narrows with
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heliocentric distance into a collimated beam of width <1◦ (An-
derson et al. 2012). However, the strahl has been observed to
broaden to pitch angles of greater than 20◦ at 1 au (Hammond
et al. 1996; Anderson et al. 2012; Graham et al. 2017), suggest-
ing the presence of additional scattering processes (Berčič et al.
2019). This increase in strahl width with radial distance is not
constant, as observations at both 5.5 au and 10 au show that the
rate of solar wind electron pitch angle scattering decreases with
radial distance (Walsh et al. 2013; Graham et al. 2017).

The strahl and halo relative number density ratios vary with
radial distance. We use ns, nh, nc and ne to define the strahl, halo,
core and total electron number densities respectively. The ra-
tio (ns + nh)/ne stays approximately constant with heliocentric
distance in both fast and slow wind, according to Štverák et al.
(2009), who obtains physical parameters by fitting to electron
velocity distributions. The effect of strahl broadening results in a
decrease of ns/ne with increasing heliocentric distance. Concur-
rently, nh/ne increases with heliocentric distance (Štverák et al.
2009), further indicating a link between the strahl and halo,
and that the relevant scattering mechanisms cause the strahl to
broaden and eventually scatter into the halo.

Multiple studies (e.g. Feldman et al. 1975; Scudder & Olbert
1979; Pilipp et al. 1987b; McComas et al. 1992; Štverák et al.
2009) identify the energy above which non-thermal parts of the
distribution deviate from the Maxwellian core. We define this
energy as the ‘breakpoint energy’, Ebp. Particles above a certain
energy experience minimal collisions, creating the non-thermal
tails in the electron velocity distribution function and forming
halo and strahl. This ‘breakpoint energy’ is thought to be de-
termined primarily by Coulomb collisions (Scudder & Olbert
1979). Based on the properties of Coulomb collisions and the
inhomogeneity of the solar wind, and assuming minimal wave-
particle interactions in the heliosphere, this breakpoint energy
theoretically relates to core temperature, Tc, and heliocentric ra-
dial distance, r, as (Scudder & Olbert 1979):

Ebp(r) = 7kBTc(r). (1)

At 1 au, the average breakpoint energy is ∼ 60 eV (Feldman et al.
1975), however, its value varies with the local core temperature
and solar wind speed (Štverák et al. 2009). The breakpoint ener-
gies between core and halo and between core and strahl are often
different. Using electron velocity distribution functions, Štverák
et al. (2009) show that the ratio between halo breakpoint en-
ergy and core temperature is larger than the ratio between strahl
breakpoint energy and core temperature, across a range of helio-
centric distances. At 1 au, Štverák et al. (2009) observe Ebp/kBTc
≈ 6.5 and Ebp/kBTc ≈ 4.5 for halo and strahl respectively. Empir-
ical studies based on Ulysses data at heliocentric distances > 1 au
(McComas et al. 1992) find that the breakpoint energy decreases
with distance ∝ r−0.4, and ranges between 47 eV and 60 eV at 1
au, and that Ebp/kBTc ≈ 7.5. However, due to the differences in
the applied methods for the determination of the cut-off between
core and suprathermal distribution functions, this difference is
not significant.

Models, which assume an absence of exchange between
parallel and perpendicular pressure, predict a core temperature
anisotropy in the slow solar wind of Tc‖/Tc⊥ ≈ 30, where Tc‖
and Tc⊥ are the temperature of the core components in the direc-
tion parallel and perpendicular to the magnetic field respectively
(Phillips & Gosling 1990). Observations at 1 au, however, find
a temperature anisotropy, Tc‖/Tc⊥ ≈ 1.2 (Feldman et al. 1975;
Pilipp et al. 1987c). To explain this discrepancy between the-
ory and observations, electron instabilities driven by tempera-

ture anisotropy, Coulomb collisions, and heat-flux skewness are
thought to transfer the internal electron kinetic energy from the
parallel to perpendicular direction (Pilipp et al. 1987c). Štverák
et al. (2008a) shows that Tc⊥/Tc‖ = 0.75±0.15 in fast wind
streams, which is also consistent with the parallel to perpendic-
ular transfer of internal kinetic energy.

In this paper, we demonstrate how machine learning tech-
niques such as clustering can be applied to solar wind electron
data, and we discuss its advantages over previous traditional
methods, which involve fitting to electron velocity distributions.
In order to demonstrate specific advantages, we analyse a par-
ticular physical property of solar wind electron populations - the
breakpoint energy - by identifying core, halo, and strahl distribu-
tions at 1 au. Characterising the breakpoint energy is important
as this property of a distribution function provides a diagnos-
tic of the relative importance of scattering mechanisms such as
Coulomb collisions and wave-particle interactions. These mech-
anisms determine the shape of electron distribution functions in
both solar wind and astrophysical plasmas (e.g. Dulk & Marsh
1982; Pilipp et al. 1987a). In addition to these benefits, under-
standing the location of this cut-off between the thermal and non-
thermal parts of a distribution, using only a statistical analysis of
the data, provides useful limiting parameters for future studies
which require multi-component fits to the total electron velocity
distribution (Berčič et al. 2019).

Machine learning provides us with a robust method of clas-
sification from which fine variations of electron populations in
relation to energy and pitch angle can be derived, with the ad-
vantage of not requiring prior assumptions of the distributions
of these populations. Applying machine learning techniques to
a large dataset builds upon previous empirical studies of the
suprathermal breakpoint energy. By classifying individual elec-
tron distributions, we characterise solar wind electron popula-
tions on a higher energy resolution than previous studies. As a
result, our method enables breakpoint energy to be explored fur-
ther with respect to other solar wind parameters, and by doing
so we draw physical conclusions based on the relationship be-
tween this fundamental property and each parameter, for both
the halo and the strahl. Machine learning techniques will become
increasingly important with the anticipated volume of high ca-
dence electron data from, for example, the Solar Orbiter mission
(Müller et al. 2013).

2. Method

In this section, we describe the steps we take in order to classify
solar wind electrons with machine learning techniques, followed
by a description of the validation of our method. Firstly, we
(1) determine which spacecraft and instruments are best suited
for this study, and locate data from different solar wind regimes
for testing. Secondly, we (2) identify possible machine learning
models to be used to distinguish between electron populations.
We then (3) verify the use of these models to find the ‘breakpoint
energy’ between suprathermal and core electrons. Following on,
we (4) apply these machine learning algorithms to separate halo
and strahl electrons based on their energy and pitch angle dis-
tributions. Lastly, we (5) calculate relative number densities of
each population for different solar wind speeds and compare to
previous studies (Štverák et al. 2009). This allows us to deter-
mine the effectiveness of our machine learning models.

Steps 3 and 4 are particularly important for our statistical
study. We use the method in step 3 to calculate the breakpoint
energy in each pitch angle bin and then step 4 to predict whether
the strahl or halo is dominant at that pitch angle.
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2.1. Data

We used data (Laakso et al. 2010) from the PEACE (Plasma
Electron And Current Experiment, Johnstone et al. 1997; Faza-
kerley et al. 2010) instrument onboard the Cluster mission’s C2
spacecraft (Escoubet et al. 2001). Cluster consists of four space-
craft, in tetrahedral formation, each spinning at a rate of 4 s-1.
The PEACE data are recorded with a 4 s time resolution and
are based on two instantaneous measurements of the pitch angle
distribution per spin. The dataset is a two-dimensional product
containing twelve 15◦ wide pitch angle bins and 44 energy bins,
spaced linearly between 0.6 eV to 9.5 eV and logarithmically
at higher energies. PEACE works by simultaneously recording
elevation bins at two specific azimuth angles separated by 180◦.
We initially corrected the PEACE data for spacecraft potential by
using measurements from the Cluster-EFW instrument (Gustafs-
son et al. 2001) and corrections according to the results of Cully
et al. (2007). We discarded data from energy bins below the cal-
culated spacecraft potential.

We used the solar wind speed measurements from the
Cluster-CIS instrument onboard the C4 spacecraft (Rème et al.
2001), while the position and magnetic field measurements are
taken from the Cluster-FGM instrument (Balogh et al. 1997).
Using the CIS measurements, we initially separated our input
electron pitch angle distribution data into three (fast, medium
and slow) solar wind regimes to test our machine learning mod-
els. These regimes cover roughly 1-2 hours of data and have
average solar wind velocities of 686 km/s, 442 km/s and 308
km/s. The time periods we identify with these fast, medium and
slow wind regimes are 08:51-10:19 (02/03/2004), 00:38-01:35
(30/01/2003) and 04:33-06:18 (08/02/2009), respectively (Ka-
jdič et al. 2016). We use these specific time intervals since they
contain enough data points (> 10,000 samples) to effectively
train and test our machine learning models.

2.2. Machine Learning Techniques

We predominantly used unsupervised learning algorithms to
determine breakpoint energies, as well as separate halo and
strahl. Unsupervised learning algorithms do not require ‘train-
ing’ so they are more time efficient than supervised learning
algorithms. Our choice of algorithm is the K-means clustering
method (Arthur 2007) from the scikit-learn library (Pedregosa
et al. 2011). Unsupervised learning algorithms have the advan-
tage of not needing the user to assign labels to training data,
which reduces bias and allows large surveys to be carried out
more efficiently. In the K-means algorithm, the number of clus-
ters, K, is manually set to 2 to reflect the number of populations
we aim to distinguish between: a core cluster and a suprather-
mal cluster. To calculate the breakpoint energy at a specific pitch
angle, our algorithm sorts between energy distributions, at that
pitch angle, and separates the distributions into two groups on
either side of the determined breakpoint energy. We define xi as
the vector representation of the phase space density (PSD) tu-
ples, where the index i labels tuples of three subsequent energy
bins (i.e. energy distributions spanning three energy bins). We
define µ j as the vector representation of two random PSD tuples,
where the index j labels each cluster. The algorithm sorts these
energy distributions into clusters by minimising the function:

n∑
i=1

K=2∑
j=1

ωi j

∥∥∥xi − µ j

∥∥∥2
, (2)

where

µ j =

∑n
i=1 ωi jxi∑n

i=1 ωi j
, (3)

ωi j =

{
1 if xi belongs to cluster j
0 otherwise,

(4)

and n is the number of 3-tuples at a fixed pitch angle. As each 3-
tuple overlaps with its neighbouring 3-tuples, n = Ne − 2, where
Ne is the number of energy bins at each pitch angle. By minimis-
ing the function in Eq. (2), our algorithm calculates the break-
point energy by: (1) randomly selecting two PSD vectors in the
dataset to become the central points of each cluster, µ j, known
as centroids, (2) assigning all remaining PSD vectors, xi, to the
closest centroid, based on the least-square error between each
vector and the centroids, (3) computing new centroids, µ j, by
calculating the average vector representation of the PSD vectors
assigned to the previous centroid, (4) reassigning each PSD vec-
tor, xi, to the new nearest centroid, µ j, and (5) iterating steps 3
and 4 until no more reassignments occur.

Once the two clusters have been finalised, the breakpoint en-
ergy at the relevant pitch angle is determined to be the midpoint
between the uppermost energy bin in the cluster of 3-tuples asso-
ciated with lower energies (which represents the core), and low-
est energy bin in the cluster of 3-tuples associated with higher
energies (which represents suprathermal electrons). As the PSD
decreases with increasing energy in the relevant energy range,
we are able to locate a clear boundary between the two clusters.
To separate strahl and halo electrons, we use energy distributions
in conjunction with pitch angle distributions, as discussed below
in Section 2.4. The process of applying our K-means algorithm
to pitch angle distributions is analogous to the method described
above, with xi now representing a pitch angle distribution at a
certain energy, however in this case we find the ‘break’ in pitch
angle instead. A detailed account of how the K-means algorithm
works is provided by Arthur (2007).

We validate our clustering method by comparing test cases to
an accurate supervised learning algorithm, trained on a subset of
manually labelled (as halo or strahl) pitch angle and energy dis-
tributions. Once trained, the supervised learning algorithm pre-
dicts which class (halo or strahl) a new pitch angle or energy
distribution belongs to. We compare supervised learning algo-
rithms by calculating their ROC (Receiver operating character-
istic) scores (e.g. Flach & Kull 2015). The ROC score compares
a binary classification model’s sensitivity (true positive rate) and
specificity (1 - false positive rate) performance. We find the K-
Nearest Neighbours (KNN) (e.g. Peterson 2009) algorithm per-
forms best, achieving ROC scores > 90% in all tests. This model
classifies data by finding the ‘majority vote’ of the nearest (la-
belled) neighbours to each unclassified data-point.

2.3. Distinguishing Between Suprathermal and Core
Electron Populations

We demonstrate the use of unsupervised clustering to calculate
the breakpoint energy. Figure 1, which shows a cut of the differ-
ential energy flux distribution at constant pitch angle, visualises
this breakpoint energy. Figure 1 contains three regions with dif-
ferent distribution functions. At energies below the spacecraft
potential at ∼10 eV, photo-electrons dominate (blue dots). At
slightly higher energies, between 10 eV and ∼45 eV, the distri-
bution represents core electrons. At larger energies we observe
the halo population. We fit a Maxwellian (red) and κ-distribution
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(yellow) (Štverák et al. 2009) to the core and halo respectively,
to determine the energy at which the distributions intersect, that
is, the ‘breakpoint energy’.

Fig. 1: Differential energy flux as a function of energy at 90◦,
averaged across times 08:51-10:19 (02/03/2004) during our fast
wind regime. The red curve represents a fit to the core electron
energy range and the yellow curve to the halo energy range. The
grey dashed line marks the so-called ‘breakpoint energy’ at 45±3
eV.

The intersection in Figure 1 results in an estimated halo
breakpoint energy of 45±3 eV. We apply the same method to flux
measured at pitch angles 0◦ and 180◦, where the strahl carries
the highest value of the flux density in the suprathermal energy
regime. These intersections show a separation between the core
and suprathermal strahl population at 42±3 eV. We use the core-
halo intersection in Figure 1, which is labelled by the dashed
line, to validate our use of clustering analysis to calculate break-
point energy, detailed below.

We omit energies below 10 eV and above 540 eV from our
dataset and use the K-means clustering algorithm (Arthur 2007)
to classify the suprathermal and core populations, and hence cal-
culate the breakpoint energy, at our choice of pitch angle. We
assess the algorithm’s performance by comparing its classifica-
tions of the core population at each time step to an averaged
distribution of the data, such as in Figure 1. This unsupervised
learning method produces encouraging results. At 90◦ pitch an-
gle, the algorithm estimates the average breakpoint energy to be
45 eV±3. The accuracy score between algorithm’s classifications
and a fit to the averaged distribution is 92.9%. As we predict bi-
nary classifications, we consider metric scores close to 90% as
‘good’ scores when testing our models, based on what previous
studies achieve (e.g. Qian et al. 2015; Zhang et al. 2017).

2.4. Separating Halo and Strahl Electrons

Figure 2 illustrates a typical differential energy flux distribu-
tion as a function of pitch angle and energy distribution for one
particular time (08:57:28-08:57:32 on 02/03/2004) recorded by
Cluster-PEACE. We limit the energy range to the suprathermal
energy regime, as a result of our breakpoint energy analysis.

In order to show the average pitch angle distribution (PAD),
we take vertical slices in Figure 2 at a given energy. The white
line (a) in Figure 2 represents the slice from which we obtain the
example PAD in Figure 3a. Below the typical breakpoint energy
these distributions are relatively isotropic across all pitch angles,
which is in contrast to the strahl distribution (McComas et al.
1992). At higher energies within the suprathermal regime, PADs

either show a quasi-isotropic distribution, which represents the
halo, or an anisotropic distribution with peak fluxes recorded at
0◦ and/or 180◦, which represents the halo population at all pitch
angles overlaid with field-aligned strahl.

From our breakpoint energy analysis, we limit our input data
to energies above 44 eV and convert these suprathermal data to
PADs across our energy range, e.g. as shown in Figure 3a. We
use an arbitrary 10-minute subset of time intervals, equivalent
to 1800 samples, as training data. We assign each PAD a label,
depending on whether strahl is or is not present. Subsequently,
the entire set of PADs during our chosen wind speed regime
are classified, based on a trained KNN model. We find a strong
agreement between this supervised method and using K-means
to cluster the fast wind set of PADs into two groups (halo and
strahl), with a calculated ROC score of 90.3%.

Classifying PADs informs us of whether a strahl is present at
a certain energy, however we require classification of the energy
distributions at each pitch angle to extract the width of the strahl.
The white line (b) in Figure 2 represents the slice from which we
obtain the example energy distribution in Figure 3b. We now use
a 10-minute interval of energy distributions, at each pitch angle,
for our training data and provide labels depending on whether
strahl is present or not at that pitch angle. We find a strong sim-
ilarity between the supervised and unsupervised methods, when
classifying the entire set of flux-energy distributions, with a ROC
score of 98.3%. This comparison therefore validates the use of
the unsupervised method for any larger statistical survey.

For each time step, we combine the classifications of
suprathermal PADs and suprathermal energy distributions to cre-
ate a grid detailing whether the measured flux in each energy and
pitch angle bin is dominated by halo electrons or by strahl elec-
trons. A bin is identified as containing strahl if both the PAD
and energy distribution it resides in are classed as strahl by the
K-means algorithm. We show the results of our strahl and halo
classification in fast wind in Figure 4. Each point represents a
single measurement at a given pitch angle and energy, with the
colour depicting the class (halo or strahl). The higher fluxes near
0◦ and 180◦ are associated with strahl (blue points). On occa-
sion, broader strahl is detected, as illustrated by the presence of
blue points at higher fluxes near 75◦. The existence of red points
across all pitch angles at lower fluxes confirms the presence of
the halo as an isotropic population.

We show the results of our strahl and halo classification in
slow wind in Figure 5. We see that the number of blue points,
associated with the strahl, is much reduced in the slow wind than
in the fast wind (see Figure 4). This finding is consistent with the
observed lower occurrence of strahl during times of slow solar
wind (e.g. Gurgiolo & Goldstein 2017). Both Figures 4 and 5
confirm that only halo electrons exist at pitch angles around 90◦.
We see for both fast and slow wind cases that the strahl exhibits
higher differential energy fluxes than the halo. The scattering of
strahl electrons into the halo results in a larger spread of elec-
trons across all pitch angles, decreasing the peak flux at any one
pitch angle.

2.5. Calculating Relative Number Densities

After classifying the dataset into core, halo and strahl regions,
we calculate the differential energy flux attributed to each popu-
lation. In order to account for halo electrons in strahl pitch angle
and energy bins, we subtract the halo flux, averaged over all pitch
angles at a fixed energy, from strahl fluxes at that energy and as-
sign it to the total halo flux. Differential energy flux relates to
the partial number density (cm-3) of each electron population as
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Fig. 2: Two-dimensional colour plot of the measured electron differential energy flux, across a 4 second window (08:57:28-08:57:32
on 02/03/2004) during our fast wind regime. The data are plotted as a function of pitch angle (degrees) and energy (eV), across an
energy range of ∼44 eV to ∼540 eV. The vertical and horizontal white dashed lines represent where cuts are made to obtain: a) the
pitch angle distribution at 110.09 eV, and b) the energy distribution at 127.5◦.

(a) Pitch Angle Distribution at 110.09 eV (b) Energy Distribution at 127.5◦

Fig. 3: a) Pitch angle distribution at an energy of 110.09 eV and, b) energy distribution at a pitch angle of 127.5◦ as projected from
the vertical and horizontal white lines in Figure 2.

according to Eq. (5) (Wüest et al. 2007):

∆n ≈ 5.4 × 10−10 E−
3
2 ∆E ∆Ω J (cm−3), (5)

where E is the average energy within interval ∆E (both measured
in keV/Q) and J is the average differential energy flux (keV/cm2-
s-str-keV) at energy E. ∆Ω is the solid angle (≤4π) over which J
is measured and relates to the pitch angle widths.

In Figure 6, we show the conversion of differential energy
flux to number density. In slow wind: the ratio ns/nh = 0.003
and (ns + nh)/nc = 0.025 where ns, nh and nc represent the strahl,
halo and core number densities. In intermediate wind: ns/nh =
0.53 and (ns + nh)/nc = 0.043 while in fast wind: ns/nh = 0.79
and (ns + nh)/nc = 0.094.

Our calculated densities are of the same order as those de-
termined by Štverák et al. (2009), who found (ns + nh)/nc =
∼0.1 and 0.04-0.05 in fast and slow wind respectively. This test
confirms that our algorithm is capable of differentiating between
solar wind electron populations to a similar degree as previous
results, with a very different method.

3. Statistical Study

3.1. Methodology

We then used ten years of pristine solar wind data, from 2001
to 2010, to quantify the relationship between strahl and halo
breakpoint energies and other solar wind parameters, notably so-
lar wind speed and core temperature. By quantifying the halo
and strahl breakpoint energies separately, we determine if each
suprathermal population is governed to the same extent by am-
bient conditions, or if they scale with each bulk parameter dif-
ferently. For this study, we use Cluster-PEACE data in units of
phase space density and split the data into four-minute intervals.
The average solar wind speed during each interval is recorded
using CIS measurements.

To confirm that Cluster is in the pristine solar wind, we used
Cluster-FGM measurements and a model of the Earth’s bow
shock position (Chao et al. 2002). We use this model to identify
when the spacecraft is outside the bow shock and not magneti-
cally connected to it. We ensure Cluster is magnetically discon-
nected from the Earth’s bow shock by discarding times when the
magnetic field vector at Cluster intersects with the bow shock
surface at any point.

We calculate the halo breakpoint energy, during each four-
minute interval, by applying K-means clustering to phase space
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Fig. 4: 3D scatter plot of the differential energy flux as a function of pitch angle and energy, for the fast solar wind dataset. The
colours define whether the K-means clustering algorithm labels each bin as either containing strahl and halo flux (blue) or only halo
flux (red).

Fig. 5: 3D scatter plot of the differential energy flux as a function of pitch angle and energy, for the slow solar wind dataset.

Fig. 6: ns/nh and (ns + nh)/nc ratios for slow, medium and fast
solar wind.

density values at 90◦ pitch angles, over a range of energies from
19 eV to 240 eV. Calculating the strahl/core breakpoint energy
entails applying these K-means models to pitch angles and in-
tervals which contain strahl. We achieve this by classifying flux-

energy distributions during each interval, using the method in
Section 2.4, to determine if strahl is present at 0◦ or 180◦.

We fit a Maxwellian velocity distribution function (Štverák
et al. 2008b) to core velocities below each strahl or halo break-
point energy, to determine the core temperature at that particular
pitch angle. This function takes the form:

fc = nc

( m
2πk

)3/2 1

Tc⊥
√

Tc‖
exp

− m
2k

 v2
⊥

Tc⊥
+

v2
‖

Tc‖

, (6)

where nc is the core density, m the electron mass, k is Boltz-
mann’s constant, Tc⊥ and Tc‖ are the core perpendicular and par-
allel temperatures and v⊥ and v‖ are the perpendicular and paral-
lel velocities.

3.2. Results

Figure 7 shows the halo breakpoint energy vs. core temperature
distribution in a ‘violin plot’ to visualise the distribution of data
points after binning the data into widths of 50 km/s. A violin
plot is similar to a box plot, with the addition that the horizontal
extend of each violin element represents a density plot of the
data at different values. The red regions in Figure 7 visualise
these density plots.
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Fig. 7: ‘Violin plot’ of halo breakpoint energy against core tem-
perature. The blue line shows the line of best fit. The white dots
indicate the median of breakpoint energies and the thick black
lines show the inter-quartile ranges (IQR). We plot the thin black
lines to display which breakpoint energies are outliers. They
span from Q3+1.5×IQR to Q1-1.5×IQR, where Q3 and Q1 are
the upper and lower quartiles, respectively. The horizontal width
of the red regions represents the density of data points at that
given breakpoint energy.

The widths of the red regions show that data are clustered
about certain energies across all wind speeds. These regions of
higher density in fact point to the energy channels (30.1 eV, 37.7
eV, 47.9 eV, 56.7 eV and 70.5 eV) within the C2-PEACE instru-
ment’s dataset. Figure 7 shows a clear positive correlation be-
tween halo breakpoint energy and core temperature, kBTc, with
a gradient of 5.74±0.09. A statistical P-test produces a p-value of
<0.0001, showing this relationship is significant at the p = 0.05
(5%) level (Rice 1990). The R-squared value of 0.626 indicates
∼63% of variation in halo breakpoint energy can be described
by this correlation. Very small inter-quartile ranges are observed
in the 1-2 eV and 5-6 eV bins, while large inter-quartile ranges
are observed in bins 4-5 eV and 6-7 eV. The results for the strahl
breakpoint energy vs. core temperature are shown in Figure 8.

Fig. 8: ‘Violin plot’ of strahl breakpoint energy against core tem-
perature. The orange line shows the line of best fit. The remain-
ing features are the same as in Figure 7.

In both Figures 7 and 8, there is small discrepancy between
the line of best fit and the median at core temperatures between
2 eV and 8 eV. When Tc < 2 eV, the linear fit underestimates all
of the measured breakpoint energies, lying below the lower quar-
tile range in both cases. In the strahl’s case, the median and upper

quartile at Tc > 8 eV drop significantly below the line of best fit.
Figure 8 suggests the dependence between core temperature and
halo and strahl breakpoint energies differs. This is evidenced by
the strahl breakpoint energy relation exhibiting a smaller gradi-
ent (5.5±0.1) and larger variance, based on the R-squared value
of 0.51, with Tc than the halo’s relation. A p-value of <0.0001
suggests that this positive correlation between strahl breakpoint
energy and core temperature is also highly significant at the p =
0.05 level.

Figure 9 shows the results of our study to determine the rela-
tionship between halo breakpoint energy and solar wind speed.
The collisionality of the solar wind plasma varies with its ve-
locity, with slow wind typically exhibiting a higher collisional-
ity than fast wind (Scudder & Olbert 1979; Lie-Svendsen et al.
1997; Salem et al. 2003; Gurgiolo & Goldstein 2017). Therefore,
comparing breakpoint energy to solar wind velocity provides
useful information on the scaling of breakpoint energy with the
collisionality of the ambient plasma. Solar wind velocity is also
a good indicator of the origin of the solar wind (Geiss et al. 1995;
Habbal et al. 1997), enabling us to investigate if breakpoint en-
ergy profiles vary with differing solar wind source regions. The
gradient in Figure 9 is -5.9±0.1 eV per 100 km/s. The R-squared
value of 0.487 is lower than 0.626 in Figure 7, indicating that
halo breakpoint energy exhibits a stronger correlation with core
temperature than with solar wind speed. A statistical P-test pro-
duces a p-value of <0.0001, showing this relationship is signifi-
cant at the p = 0.05 (5%) level.

Fig. 9: ‘Violin plot’ of halo breakpoint energy against solar wind
speed. The blue line shows the line of best fit. The remaining
features are the same as in Figure 7.

The distribution of breakpoint energies with wind speed in
Figure 9 displays a step function at about 500 km/s. The lower
quartile within the 450-500 km/s bin lies above the upper quar-
tiles in faster speed bins. Fitting two linear fits to solar wind
speeds below and above 500 km/s separately produces gradients
of -4.2±0.1 eV per 100 km/s and -3.5±0.1 eV per 100 km/s re-
spectively. The associated R-squared values are 0.588 and 0.651
respectively; both larger than a value 0.487 for a single linear
fit, indicating that two separate correlations better describe the
distribution in Figure 9 than a single correlation. The two corre-
lations are also significant at the p = 0.05 (5%) level. The data-
points in Figure 9 are distributed along a larger range of break-
point energies at lower wind speeds than higher wind speeds.
However, according to the inter-quartile ranges for the majority
of data-points, the variance about the median values is relatively
small, with the exception of a few outliers. The medians them-
selves do not deviate significantly from the line of best fit across
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all wind speeds, with the largest median residual equalling 5 eV
in the <300 km/s bin. There is some evidence for positive or
negative skewness at certain solar wind velocities, such as in the
<300 km/s and 400-450 km/s bins, as can be seen when the me-
dian appears to lie on one of the edges of the inter-quartile range.

Figure 10 shows the strahl breakpoint energy variation with
solar wind speed. According to our linear fit, the rate of decrease
of strahl breakpoint energy with solar wind speed is -5.7±0.1 eV
per 100 km/s. Solar wind speed has a smaller correlation with
strahl breakpoint energy than halo breakpoint energy, based on
the steepness of each gradient and R-squared values. This R-
squared value of 0.460 in Figure 10 also indicates that the strahl
breakpoint energy has a weaker correlation statistically with so-
lar wind speed than with core temperature, as the line of best fit
describes less of the variation. This is also the case for the halo
breakpoint energy. A p-value of <0.0001 indicates that this neg-
ative correlation is also highly significant at the p = 0.05 level.

Fig. 10: ‘Violin plot’ of strahl breakpoint energy against solar
wind speed. The orange line shows the line of best fit. The re-
maining features are in the same format as Figure 7.

Similar to Figure 9, the variation in breakpoint energy in
the strahl violin plot is larger at smaller wind speeds. However,
unlike for halo, the 400-450 km/s bin has a much larger vari-
ance than the <300 km/s bin, as evidenced by their inter-quartile
ranges. This larger spread of data at medium wind speeds ex-
plains why the strahl’s R-squared value is lower than the halo’s.
The lack of skewness in Figure 10 shows that the data are dis-
tributed more symmetrically in the strahl’s case than the halo’s.
The sum of the median residuals are also smaller for the strahl,
with the largest median residual at 3.5 eV in the <300 km/s
solar wind speed bin. A step function is less apparent in Fig-
ure 10, however there is a clear distinction between the median
breakpoint energy relation with wind speed in slow winds (<450
km/s), compared to fast winds. Table 1 contains the gradients
and R-squared values of the correlations in Figures 7, 8, 9, and
10.

Table 1: Correlations between halo and strahl breakpoint ener-
gies with core temperature, Tc and solar wind speed, Vsw, as rep-
resented by the gradients and R-squared, R2, values.

Tc Vsw
Population Ebp/Tc R2 Ebp/Vsw R2

[eV/(km/s)]
Halo 5.74 0.626 -0.059 0.487
Strahl 5.5 0.51 -0.057 0.460

4. Discussion

In this study, we use the K-means algorithm to successfully dis-
tinguish between the three populations and we train a supervised
learning algorithm (K-nearest neighbours) to classify a subset of
the pitch angle and energy distributions. There is a strong agree-
ment between the two machine learning methods, allowing us
to apply the K-means clustering method to a larger subset of
solar wind electron data at different solar wind velocities. Ma-
chine learning algorithms provide us with an efficient method of
classification from which small scale variations of electron pop-
ulations in relation to energy and pitch angle can be derived. By
classifying a single distribution at each time step, we build up
a high resolution picture of suprathermal breakpoint energy and
relative number density, including how they evolve with differ-
ent parameters. The techniques we employ can be easily applied
to any classification problem where sufficient data are available.

Distinguishing between strahl, halo, and core electron popu-
lations allows us to calculate their relative number densities, in
order to compare our method to previous results. Štverák et al.
(2009) show that suprathermal electrons in the fast wind con-
stitute ∼10% of the total electron number density, while in slow
wind they occupy 4% to 5% of the total electron density. In com-
parison, we obtain values of ∼9.4% and 2.5-4.3% for fast and
slow wind respectively. Obtaining densities of the same order as
Štverák et al. (2009) confirms that our method is capable of dis-
tinguishing between multiple solar wind electron populations to
a similar degree as alternative methods. Being a zeroth order mo-
ment, there is a smaller level of uncertainty when calculating the
density, as opposed to the breakpoint energy or higher order mo-
ments, by fitting distribution functions. Using machine learning
techniques instead of fitting bi-Maxwellian and bi-Kappa func-
tions to electron velocity distributions, which involves fixing cer-
tain parameters (Štverák et al. 2009), eliminates the need to use
prior assumptions about these solar wind electron populations.
Therefore, our new method results in more robust estimations of
the solar wind electrons’ breakpoint energies.

The observation that the majority of the halo population is
formed due to strahl scattering (Saito & Gary 2007; Pagel et al.
2007; Štverák et al. 2009) explains the relationship between
ns/nh and wind speed in Figure 6. Strahl in slow solar wind un-
dergoes more scattering per unit distance than in faster wind (e.g.
Fitzenreiter et al. 1998), leading to a higher value of nh/ne at 1
au. We observe a near absence of strahl in very slow solar wind
at velocities of 308 km/s (see Figures 5 and 6), which is con-
sistent with observations from previous studies (e.g. Fitzenreiter
et al. 1998; Gurgiolo & Goldstein 2017; Graham et al. 2018). By
analysing a number of periods of slow solar wind, Fitzenreiter
et al. (1998) find that the strahl generally has a larger width in
slow solar winds than fast, while Gurgiolo & Goldstein (2017)
find that strahl is often not present at solar wind velocities . 425
km/s. Graham et al. (2018) also note an absence of strahl dur-
ing certain slow solar wind times. This absence of strahl remains
unexplained. Possible hypotheses include: Coulomb pitch angle
scattering which counteracts magnetic focussing effects during
strahl formation (Horaites et al. 2018), intense scattering due to
broadband whistler turbulence (Pierrard et al. 2001), and the lack
of initial strahl formation during the production of slow solar
wind (Gurgiolo & Goldstein 2017).

Instead of finding the intersection between core and
suprathermal fitting functions (e.g. Pilipp et al. 1987a; McCo-
mas et al. 1992; Štverák et al. 2009), a method which according
to McComas et al. (1992) produces ‘somewhat arbitrary’ val-
ues, our method calculates the breakpoint energy based on the
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data recorded in each individual pitch angle and energy bin. Our
method calculates breakpoint energy values of both sunward and
anti-sunward strahl, occasionally obtaining two strahl breakpoint
energy values at a single time if bi-directional strahl is present.
An alternative method is presented by Štverák et al. (2009) who
discard sunward strahl in their calculations of the strahl Ebp/kBTc
ratio at each radial distance. By characterising both sunward and
anti-sunward strahl, our method significantly improves the char-
acterisation of all electron beams in the solar wind.

Our work on the core velocity distribution functions eluci-
dates the relative correlation between core temperature, Tc, and
both halo and strahl breakpoint energies. Using core temperature
as a reference point enables us to predict to what extent strahl
and halo characteristics scale to characteristics of the core. The
core temperature has a strong correlation with both suprathermal
breakpoint energies, with the halo breakpoint energy exhibit-
ing a closer correlation than the strahl’s. Both halo and strahl
breakpoint energies statistically have a stronger correlation with
core temperature than with solar wind speed. The gradients be-
tween breakpoint energy and core temperature are calculated as
5.74±0.09 and 5.5±0.1 for halo and strahl respectively.

The linear relationship that we observe between breakpoint
energy and core temperature is in line with previous measure-
ments (e.g. McComas et al. 1992; Štverák et al. 2009), for both
the halo and strahl. According to Scudder & Olbert (1979), a
linear trend in the halo relation also follows under the assump-
tion that binary Coulomb collisions dominate electron dynamics
in the solar wind. However, in order to align with available ex-
perimental data, Scudder & Olbert (1979) set a scaling factor of
Ebp/kBTc = 7, which differs from our scaling factor of Ebp/kBTc
= 5.5±0.1. With a scaling factor of Ebp/kBTc = 7, Scudder &
Olbert (1979) predict that a transformation of thermal electrons
into the suprathermal population occurs as the solar wind flows
out from the Sun. Findings by Štverák et al. (2009), on the other
hand, show that the (nh + ns)/nc ratio remains roughly constant
with heliocentric distance in the slow wind, suggesting a lack of
interchange between the thermal and suprathermal populations.
However Štverák et al. (2009) observes some variability in the
(nh + ns)/nc ratio in the fast wind, which they attribute to either
statistical effects due to a lack of samples or a possible ‘inter-
play’ between thermal and suprathermal electrons. Scudder &
Olbert (1979) also predict that the halo Ebp/kBTc ratio remains
constant with heliocentric distance, whereas Štverák et al. (2009)
find that the halo Ebp/kBTc ratio decreases with heliocentric dis-
tance. These findings by Štverák et al. (2009), along with the
discrepancy between our calculated ratio of Ebp/kBTc = 5.5±0.1
and the prediction of Ebp/kBTc = 7, suggest that the model of
Scudder & Olbert (1979) requires a minor update to either the
theory or to the input parameters. The discrepancy, however, may
also be indicative of other processes, such as wave-particle scat-
tering (e.g. Gary et al. 1994), that possibly modifies the ratio be-
tween breakpoint energy and core temperature while preserving
its linear relationship.

In our statistical study, we find that both strahl and halo
breakpoint energies decrease with solar wind speed. At all solar
wind velocities, as well as core temperatures, the halo breakpoint
energy is larger than the strahl’s at equivalent velocities and tem-
peratures. The halo breakpoint energy exhibits a higher correla-
tion with the solar wind speed than strahl. The anti-correlation
between the two parameters corresponds with the finding that
(nh+ns)/nc increases with solar wind speed (Štverák et al. 2009),
where nh, ns and nc represent the halo, strahl, and core num-
ber densities. Assuming all plasma parameters are kept constant,

except for the core density and temperature, the relative den-
sity of suprathermal electrons will increase if the breakpoint en-
ergy decreases. This observed relationship between solar wind
speed and electron ratios is most likely a result of the lower
collisionality of fast solar wind (Scudder & Olbert 1979; Lie-
Svendsen et al. 1997; Salem et al. 2003; Gurgiolo & Goldstein
2017), which results in more distinctive non-thermal features of
the electron velocity distribution function. Further work is re-
quired to analyse whether different breakpoint energy relations
exist that depend on the source of solar wind. Initial findings in
this paper suggest the existence of two distinct relationships in
the halo breakpoint energy vs. wind speed distribution, with a
step function at 500 km/s. This finding links to a sharp distinc-
tion between fast and slow solar winds (Feldman et al. 2005).
Therefore the origin of the solar wind, i.e., coronal holes for fast
wind or streamer belt regions for slow wind, potentially plays a
role in the definition of thermal and non-thermal electron popu-
lations. A step function is less obvious in the strahl breakpoint
energy vs. solar wind speed distribution.

5. Conclusions

In this study, we apply unsupervised K-means clustering algo-
rithms to Cluster-PEACE data to separate solar wind electron
pitch angle and energy distributions into the core, halo, and strahl
populations. This enables us to perform an accurate statistical
analysis of strahl and halo breakpoint energies. In our statistical
study, we compare the relationship between core temperature,
Tc and both halo and strahl breakpoint energies. We present a
strong correlation between suprathermal breakpoint energies and
Tc, and conclude this is due to core temperature being a deter-
mining factor for breakpoint energy. As a result of higher core
temperatures, the Maxwellian part of the total electron velocity
distribution function, which represents the core, extends across
a wider range of velocity space (Pilipp et al. 1987a). The core
distribution therefore overlaps with the halo and strahl at higher
energies and thus increases the suprathermal breakpoint energy.

We find that halo breakpoint energy remains larger than the
strahl’s across all temperatures. This difference between halo and
strahl breakpoint energies suggests that there are certain ener-
gies, below the halo breakpoint energy, at which a strahl and
core population are both present. At these energies, strahl dom-
inates at parallel pitch angles and core dominates at perpendic-
ular pitch angles. Wave-particle scattering processes (Gary et al.
1994; Vasko et al. 2019; Verscharen et al. 2019) scatter these
low energy strahl electrons to higher perpendicular velocities
and smaller parallel velocities. At sufficiently high core temper-
atures, these strahl electrons would be absorbed by the core pop-
ulation (Pilipp et al. 1987b), instead of the higher energy halo
population. The absorption of strahl electrons by the core in-
creases the number of Coulomb collisions (Landi et al. 2012),
which then leads to an increase in core temperature (Marsch &
Goldstein 1983; Boldyrev et al. 2020). This scenario is consis-
tent with previous studies (Pilipp et al. 1987c) which show a
transfer of electron kinetic energy from the parallel to perpendic-
ular direction, increasing core temperature in the perpendicular
direction. The increase of core temperature, due to the absorp-
tion of strahl electrons, acts to extend the core component of the
electron velocity distribution function to higher velocities (Pilipp
et al. 1987a), therefore increasing the halo breakpoint energy at
pitch angles at which the strahl is not present. This phenomenon
explains the larger difference between strahl and halo breakpoint
energies at higher core temperatures, as a larger difference in
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breakpoint energy means more strahl electrons are scattering into
the core population rather than the halo population.

This work signifies the first extensive study in characterising
the relation between breakpoint energy and solar wind speed, for
each of the suprathermal populations. Our results show there is
a significant decrease in both halo and strahl breakpoint ener-
gies with increasing solar wind speed, with the halo relation ex-
hibiting a stronger correlation. We find two distinct relationships
in the halo breakpoint energy vs. solar wind speed distribution,
with a step function at 500 km/s. We predict this step function
relates to the difference in origin of fast and slow solar wind
electrons (Feldman et al. 2005). Further investigation, with the
aid of new facilities provided by the Parker Solar Probe and So-
lar Orbiter missions, can test this prediction and investigate why
the step function is prevalent in the halo breakpoint energy rela-
tionship but not in the strahl breakpoint energy relationship with
solar wind speed. In future studies, using Solar Orbiter measure-
ments at smaller heliocentric distances will allow us to better
characterise halo and strahl breakpoint energies and improve our
understanding of their dependence on bulk solar wind parame-
ters.
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