19 research outputs found

    Pulmonary sclerosing hemangioma in a 21-year-old male with metastatic hereditary non-polyposis colorectal cancer: Report of a case

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pulmonary sclerosing hemangioma (SH) is a rare tumor of the lung predominantly affecting Asian women in their fifth decade of life. SH is thought to evolve from primitive respiratory epithelium and mostly shows benign biological behavior; however, cases of lymph node metastases, local recurrence and multiple lesions have been described.</p> <p>Case Presentation</p> <p>We report the case of a 21-year-old Caucasian male with a history of locally advanced and metastatic rectal carcinoma (UICC IV; pT4, pN1, M1(hep)) that was eventually identified as having hereditary non-polyposis colorectal cancer (HNPCC, Lynch syndrome). After neoadjuvant chemotherapy followed by low anterior resection, adjuvant chemotherapy and metachronous partial hepatectomy, he was admitted for treatment of newly diagnosed bilateral pulmonary metastases. Thoracic computed tomography showed a homogenous, sharply marked nodule in the left lower lobe. We decided in favor of atypical resection followed by systematic lymphadenectomy. Histopathological analysis revealed the diagnosis of SH.</p> <p>Conclusions</p> <p>Cases have been published with familial adenomatous polyposis (FAP) and simultaneous SH. FAP, Gardner syndrome and Li-Fraumeni syndrome, however, had been ruled out in the present case. To the best of our knowledge, this is the first report describing SH associated with Lynch syndrome.</p

    Augmenter of liver regeneration

    Get PDF
    ‘Augmenter of liver regeneration’ (ALR) (also known as hepatic stimulatory substance or hepatopoietin) was originally found to promote growth of hepatocytes in the regenerating or injured liver. ALR is expressed ubiquitously in all organs, and exclusively in hepatocytes in the liver. ALR, a survival factor for hepatocytes, exhibits significant homology with ERV1 (essential for respiration and viability) protein that is essential for the survival of the yeast, Saccharomyces cerevisiae. ALR comprises 198 to 205 amino acids (approximately 22 kDa), but is post-translationally modified to three high molecular weight species (approximately 38 to 42 kDa) found in hepatocytes. ALR is present in mitochondria, cytosol, endoplasmic reticulum, and nucleus. Mitochondrial ALR may be involved in oxidative phosphorylation, but also functions as sulfhydryl oxidase and cytochrome c reductase, and causes Fe/S maturation of proteins. ALR, secreted by hepatocytes, stimulates synthesis of TNF-α, IL-6, and nitric oxide in Kupffer cells via a G-protein coupled receptor. While the 22 kDa rat recombinant ALR does not stimulate DNA synthesis in hepatocytes, the short form (15 kDa) of human recombinant ALR was reported to be equipotent as or even stronger than TGF-α or HGF as a mitogen for hepatocytes. Altered serum ALR levels in certain pathological conditions suggest that it may be a diagnostic marker for liver injury/disease. Although ALR appears to have multiple functions, the knowledge of its role in various organs, including the liver, is extremely inadequate, and it is not known whether different ALR species have distinct functions. Future research should provide better understanding of the expression and functions of this enigmatic molecule

    Insulin Decreases Inflammatory Signal Transcription Factor Expression in Primary Human Liver Cells after LPS Challenge

    No full text
    Hepatic homeostasis is essential for survival in critically ill and burned patients. Insulin administration improves survival and decreases infections in these patients. To determine the molecular mechanisms, the aim of the present study was to establish a stress model using primary human hepatocytes (PHHs) and to study the effects of insulin on the hepatic inflammatory signaling cascade. Liver tissue was obtained from general surgical patients, and PHHs were isolated and maintained in culture. Primary hepatocyte cultures were challenged with various doses of lipopolysaccharide (LPS), and the inflammatory signal transcription cascade was determined by real-time PCR. In subsequent experiments, primary hepatocyte cultures were challenged with LPS and insulin was added in various doses. Glucose was determined by colorimetric assays. PHHs treated with 100 μg/mL LPS showed a profound inflammatory reaction with increased expression of interleukin (IL)-6, IL-10, IL-1β, tumor necrosis factor (TNF), and signal transducer and activator of transcription 5 (STAT-5). Insulin at 10 IU/mL significantly decreased IL-6, TNF, and IL-1β at pretranslational levels, an effect associated with decreased STAT-5 mRNA expression (P < 0.05). Glucose concentration and cellular metabolic activity were not different between controls and insulin-treated cells. Based on our results, we suggest that primary hepatocyte cultures can be used to study the effect of LPS on the inflammatory cascade. Insulin decreases hepatic cytokine expression, which is associated with decreased STAT-5 expression
    corecore