1,001 research outputs found

    Autoclave design for high pressure-high temperature corrosion studies

    Get PDF
    Acknowledgements The authors gratefully acknowledge the contribution of Steve Cawley of John Cardwell Limited and Jim Herrmann of Cortest Inc. for the manufacture of the autoclave and for the permission to use the vessel design schematic drawings (Figures 8 and 9) in the paper; these figures are not to be used for production without the express written permission of Cortest Inc. The assistance of the technical staff of the School of Engineering Central Workshop is much appreciated.Peer reviewedPostprin

    Crack detection in a rotating shaft using artificial neural networks and PSD characterisation

    Get PDF
    Peer reviewedPostprin

    The uninvited guests: Britain’s military forces in Iceland, 1940-1942

    Get PDF
    Throughout 10 May 1940-22 April 1942, British forces conducted a military occupation of Iceland. There were two initial reasons for this venture: firstly, in order to acquire air and naval bases to combat German forces situated along the Norwegian coast; and secondly, in order to prevent the island from coming under German control, thus guarding against encirclement. Whitehall certainly considered it an advantageous undertaking. However, as this dissertation shall show, such beliefs were swiftly escalated. During June 1940, after France’s capitulation, the retention and defence of Iceland became all the more important. It was essential, for example, that Britain could maintain at least one clear access route in and out the North Atlantic. Failure to do so would surely have lead to her starvation and/or military defeat. As a result, and along with other important reasons discussed herein, over 20,000 British Army, Royal Navy and Royal Air Force personnel, supported at various points by American and Canadian troops, were eventually stationed there. Unfortunately, there are very few publications on the British invasion and occupation of Iceland, notwithstanding a few specialist works. Those works that do exist, however, read more like chronological narratives, rather than analytical studies. Consequently, there exists some exciting opportunities for the historiography’s expansion, not just in size, but also in nature of content. This dissertation, entitled ‘The Uninvited Guests: Britain’s Military Forces in Iceland, 1940-1942’, contributes to that much needed expansion. This dissertation looks at the British occupation of Iceland over two periods: the invasion period, 10-19 May 1940, and the occupation period, 20 May 1940-22 April 1942. It assesses the effects and consequences of both the invasion and occupation, and tries to determine how far they preserved Icelandic freedoms and secured Allied interests in Northern Europe. Indeed, this dissertation shows that the invasion and initial occupation of Iceland was a complete military disaster, one that offered no benefit to either the Icelanders or Allies. If iii anything, it put the Icelanders at greater risk of harm from German retaliation. This dissertation also shows that Britain made good its early deficiencies by eventually bringing security and prosperity to Iceland, where before there had been none, and by positively utilising Iceland in the war against Germany. The conclusions of this dissertation are fascinating; they show that it is possible to cultivate rich reward from an operation that could have been destined for complete disaster

    Comparative study of semiclassical approaches to quantum dynamics

    Full text link
    Quantum states can be described equivalently by density matrices, Wigner functions or quantum tomograms. We analyze the accuracy and performance of three related semiclassical approaches to quantum dynamics, in particular with respect to their numerical implementation. As test cases, we consider the time evolution of Gaussian wave packets in different one-dimensional geometries, whereby tunneling, resonance and anharmonicity effects are taken into account. The results and methods are benchmarked against an exact quantum mechanical treatment of the system, which is based on a highly efficient Chebyshev expansion technique of the time evolution operator.Comment: 32 pages, 8 figures, corrected typos and added references; version as publishe

    2D/3D Visual Tracker for Rover Mast

    Get PDF
    A visual-tracker computer program controls an articulated mast on a Mars rover to keep a designated feature (a target) in view while the rover drives toward the target, avoiding obstacles. Several prior visual-tracker programs have been tested on rover platforms; most require very small and well-estimated motion between consecutive image frames a requirement that is not realistic for a rover on rough terrain. The present visual-tracker program is designed to handle large image motions that lead to significant changes in feature geometry and photometry between frames. When a point is selected in one of the images acquired from stereoscopic cameras on the mast, a stereo triangulation algorithm computes a three-dimensional (3D) location for the target. As the rover moves, its body-mounted cameras feed images to a visual-odometry algorithm, which tracks two-dimensional (2D) corner features and computes their old and new 3D locations. The algorithm rejects points, the 3D motions of which are inconsistent with a rigid-world constraint, and then computes the apparent change in the rover pose (i.e., translation and rotation). The mast pan and tilt angles needed to keep the target centered in the field-of-view of the cameras (thereby minimizing the area over which the 2D-tracking algorithm must operate) are computed from the estimated change in the rover pose, the 3D position of the target feature, and a model of kinematics of the mast. If the motion between the consecutive frames is still large (i.e., 3D tracking was unsuccessful), an adaptive view-based matching technique is applied to the new image. This technique uses correlation-based template matching, in which a feature template is scaled by the ratio between the depth in the original template and the depth of pixels in the new image. This is repeated over the entire search window and the best correlation results indicate the appropriate match. The program could be a core for building application programs for systems that require coordination of vision and robotic motion

    Phylogenetic Analysis of the MS4A and TMEM176 Gene Families

    Get PDF
    The MS4A gene family in humans includes CD20 (MS4A1), FcRbeta (MS4A2), Htm4 (MS4A3), and at least 13 other syntenic genes encoding membrane proteins, most having characteristic tetraspanning topology. Expression of MS4A genes is variable in tissues throughout the body; however, several are limited to cells in the hematopoietic system where they have known roles in immune cell functions. Genes in the small TMEM176 group share significant sequence similarity with MS4A genes and there is evidence of immune function of at least one of the encoded proteins. In this study, we examined the evolutionary history of the MS4A/TMEM176 families as well as tissue expression of the phylogenetically earliest members, in order to investigate their possible origins in immune cells.Orthologs of human MS4A genes were found only in mammals; however, MS4A gene homologs were found in most jawed vertebrates. TMEM176 genes were found only in mammals and bony fish. Several unusual MS4A genes having 2 or more tandem MS4A sequences were identified in the chicken (Gallus gallus) and early mammals (opossum, Monodelphis domestica and platypus, Ornithorhyncus anatinus). A large number of highly conserved MS4A and TMEM176 genes was found in zebrafish (Danio rerio). The most primitive organism identified to have MS4A genes was spiny dogfish (Squalus acanthus). Tissue expression of MS4A genes in S. acanthias and D. rerio showed no evidence of expression restricted to the hematopoietic system.Our findings suggest that MS4A genes first appeared in cartilaginous fish with expression outside of the immune system, and have since diversified in many species into their modern forms with expression and function in both immune and nonimmune cells

    Potential of Probing the Lunar Regolith using Rover-Mounted Ground Penetrating Radar: Moses Lake Dune Field Analog Study

    Get PDF
    Probing radars have been widely recognized by the science community to be an efficient tool to explore lunar subsurface providing a unique capability to address several scientific and operational issues. A wideband (200 to 1200 MHz) Ground Penetrating Radar (GPR) mounted on a surface rover can provide high vertical resolution and probing depth from few tens of centimeters to few tens of meters depending on the sounding frequency and the ground conductivity. This in term can provide a better understand regolith thickness, elemental iron concentration (including ilmenite), volatile presence, structural anomalies and fracturing. All those objectives are of important significance for understanding the local geology and potential sustainable resources for future landing sites in particular exploring the thickness, structural heterogeneity and potential volatiles presence in the lunar regolith. While the operation and data collection of GPR is a straightforward case for most terrestrial surveys, it is a challenging task for remote planetary study especially on robotic platforms due to the complexity of remote operation in rough terrains and the data collection constrains imposed by the mechanical motion of the rover and limitation in data transfer. Nevertheless, Rover mounted GPR can be of great support to perform systematic subsurface surveys for a given landing site as it can provide scientific and operational support in exploring subsurface resources and sample collections which can increase the efficiency of the EVA activities for potential human crews as part of the NASA Constellation Program. In this study we attempt to explore the operational challenges and their impact on the EVA scientific return for operating a rover mounted GPR in support of potential human activity on the moon. In this first field study, we mainly focused on the ability of GPR to support subsurface sample collection and explore shallow subsurface volatiles

    Branchpoint translocation by fork remodelers as a general mechanism of R-loop removal.

    Get PDF
    Co-transcriptional R loops arise from stalling of RNA polymerase, leading to the formation of stable DNA:RNA hybrids. Unresolved R loops promote genome instability but are counteracted by helicases and nucleases. Here, we show that branchpoint translocases are a third class of R-loop-displacing enzyme in vitro. In cells, deficiency in the Fanconi-anemia-associated branchpoint translocase FANCM causes R-loop accumulation, particularly after treatment with DNA:RNA-hybrid-stabilizing agents. This correlates with FANCM localization at R-loop-prone regions of the genome. Moreover, other branchpoint translocases associated with human disease, such as SMARCAL1 and ZRANB3, and those from lower organisms can also remove R loops in vitro. Branchpoint translocases are more potent than helicases in resolving R loops, indicating their evolutionary important role in R-loop suppression. In human cells, FANCM, SMARCAL1, and ZRANB3 depletion causes additive effects on R-loop accumulation and DNA damage. Our work reveals a mechanistic basis for R-loop displacement that is linked to genome stability
    corecore