380 research outputs found

    Wax Point Determinations Using Acoustic Resonance Spectroscopy

    Get PDF
    The thermodynamic characterization of the wax point of a given crude is essential in order to maintain flow conditions that prevent plugging of undersea pipelines. This report summarizes the efforts made towards applying an Acoustic Cavity Resonance Spectrometer (ACRS) to the determination of pressures and temperatures at which wax precipitates from crude. Phillips Petroleum Company, Inc., the CRADA participant, supplied the ACRS. The instrumentation was shipped to Dr. Thomas Schmidt of ORNL, the CRADA contractor, in May 2000 after preliminary software development performed under the guidance of Dr. Samuel Colgate and Dr. Evan House of the University of Florida, Gainesville, Fl. Upon receipt it became apparent that a number of modifications still needed to be made before the ACRS could be precisely and safely used for wax point measurements. This report reviews the sequence of alterations made to the ACRS, as well as defines the possible applications of the instrumentation once the modifications have been completed. The purpose of this Cooperative Research and Development Agreement (CRADA) between Phillips Petroleum Company, Inc. (Participant) and Lockheed Martin Energy Research Corporation (Contractor) was the measurement of the formation of solids in crude oils and petroleum products that are commonly transported through pipelines. This information is essential in the proper design, operation and maintenance of the petroleum pipeline system in the United States. Recently, new petroleum discoveries in the Gulf of Mexico have shown that there is a potential for plugging of undersea pipeline because of the precipitation of wax. It is important that the wax points of the expected crude oils be well characterized so that the production facilities for these new wells are capable of properly transporting the expected production. The goal of this work is to perform measurements of solids formation in crude oils and petroleum products supplied by the Participant. It is anticipated that these data will be used in the design of new production facilities and in the development of thermodynamic models that describe the behavior of wax-saturated petroleum

    Design of Microwave Vitrification Systems for Radioactive Waste

    Get PDF
    Oak Ridge National Laboratory (ORNL) is involved in the research and development of high-power microwave heating systems for the vitrification of DOE radioactive sludges. Design criteria for a continuous microwave vitrification system capable of processing a surrogate filtercake sludge representative of a typical waste-water treatment operation are discussed. A prototype 915 MHz, 75 kW microwave vitrification system or `microwave melter` is described along with some early experimental results that demonstrate a 4 to 1 volume reduction of a surrogate ORNL filtercake sludge

    Integrating stochastic models and in situ sampling for monitoring soil carbon sequestration

    Get PDF
    Participation in carbon (C) markets could provide farmers in developing countries incentives for improving soil fertility. However carbon traders need assurances that contract levels of C are being achieved. Thus, methods are needed to monitor and verify soil C changes over time and space to determine whether target levels of C storage are being met. Because direct measurement over the large areas needed to sequester contract amounts of C in soil is not practical, other approaches are necessary. An integrated approach is described in which an Ensemble Kalman Filter (EnKF) is used to assimilate in situ soil carbon measurements into a stochastic soil C model to estimate soil C changes over time and space. The approach takes into account errors in in situ measurements and uncertainties in the model to estimate mean and variance of soil C for each land unit within a larger land area. The approach requires initial estimates of soil C over space along with uncertainties in these estimates. Model predictions are made to estimate soil C for the next year, in situ soil C measurements update these predictions using maximum likelihood methods, and the spatial pattern of soil C mean, variance, and covariance thus evolve over time. This approach can also be used to provide yearly estimates of the changes in soil C over multiple fields, the variance in those estimates, and aggregate soil carbon mean and variance values each year. In this paper, the use of the EnKF is shown for an area in Ghana with 12 fields, comparing numbers of fields sampled each year and ways of selecting which fields to sample each year. The model predicts soil C changes over time using first order decomposition of existing soil C and addition of C from plant residues. The lowest intensity sampling method (sampling only 1/4 of the fields per year) resulted in the highest level of uncertainty in aggregate soil C estimate. Rotating sample fields each year improved the performance of the EnKF. These results demonstrated a quantifiable tradeoff between field sampling intensity and uncertainty in aggregate soil C estimates. The framework could be modified to use more complex biophysical models and to assimilate remote sensing dat

    Distinct degassing pulses during magma invasion in the stratified Karoo Basin – New insights from hydrothermal fluid flow modelling

    Get PDF
    Magma emplacement in organic‐rich sedimentary basins is a main driver of past environmental crises. Using a 2D numerical model, we investigate the process of thermal cracking in contact aureoles of cooling sills and subsequent transport and emission of thermogenic methane by hydrothermal fluids. Our model includes a Mohr‐Coulomb failure criterion to initiate hydrofracturing and a dynamic porosity/permeability. We investigate the Karoo Basin, taking into account host‐rock material properties from borehole data, realistic total organic carbon content, and different sill geometries. Consistent with geological observations, we find that thermal plumes quickly rise at the edges of saucer‐shaped sills, guided along vertically fractured high permeability pathways. Contrastingly, less focused and slower plumes rise from the edges and the central part of flat‐lying sills. Using a novel upscaling method based on sill‐to‐sediment ratio we find that degassing of the Karoo Basin occurred in two distinct phases during magma invasion. Rapid degassing triggered by sills emplaced within the top 1.5 km emitted ~1.6·103 Gt of thermogenic methane, while thermal plumes originating from deeper sills, carrying a 12‐times greater mass of methane, may not reach the surface. We suggest that these large quantities of methane could be re‐mobilized by the heat provided by neighboring sills. We conclude that the Karoo LIP may have emitted as much as ~22.3·103 Gt of thermogenic methane in the half million years of magmatic activity, with emissions up to 3 Gt/year. This quantity of methane and the emission rates can explain the negative δ13C excursion of the Toarcian environmental crisis. Key Points Sill geometry and emplacement depth as well as intruded host rock type are the main factors controlling methane mobilization and degassing Dehydration‐related porosity increase and pore‐pressure‐induced hydrofracturing are important mechanisms for a quick transport of methane from sill to the surface The Karoo Basin may have degassed ~22.3·103 Gt of thermogenic methane in the half million years of magmatic activit

    A Structural Model of the Pore-Forming Region of the Skeletal Muscle Ryanodine Receptor (RyR1)

    Get PDF
    Ryanodine receptors (RyRs) are ion channels that regulate muscle contraction by releasing calcium ions from intracellular stores into the cytoplasm. Mutations in skeletal muscle RyR (RyR1) give rise to congenital diseases such as central core disease. The absence of high-resolution structures of RyR1 has limited our understanding of channel function and disease mechanisms at the molecular level. Here, we report a structural model of the pore-forming region of RyR1. Molecular dynamics simulations show high ion binding to putative pore residues D4899, E4900, D4938, and D4945, which are experimentally known to be critical for channel conductance and selectivity. We also observe preferential localization of Ca2+ over K+ in the selectivity filter of RyR1. Simulations of RyR1-D4899Q mutant show a loss of preference to Ca2+ in the selectivity filter as seen experimentally. Electrophysiological experiments on a central core disease mutant, RyR1-G4898R, show constitutively open channels that conduct K+ but not Ca2+. Our simulations with G4898R likewise show a decrease in the preference of Ca2+ over K+ in the selectivity filter. Together, the computational and experimental results shed light on ion conductance and selectivity of RyR1 at an atomistic level

    Modern Electronic Techniques Applied to Physics and Engineering

    Get PDF
    Contains reports on seven research projects.Office of Scientific Research and Development (OSRD) OEMsr-26

    Ectopic Catalase Expression in Mitochondria by Adeno-Associated Virus Enhances Exercise Performance in Mice

    Get PDF
    Oxidative stress is thought to compromise muscle contractility. However, administration of generic antioxidants has failed to convincingly improve performance during exhaustive exercise. One possible explanation may relate to the inability of the supplemented antioxidants to effectively eliminate excessive free radicals at the site of generation. Here, we tested whether delivering catalase to the mitochondria, a site of free radical production in contracting muscle, could improve treadmill performance in C57Bl/6 mice. Recombinant adeno-associated virus serotype-9 (AV.RSV.MCAT) was generated to express a mitochondria-targeted catalase gene. AV.RSV.MCAT was delivered to newborn C57Bl/6 mouse circulation at the dose of 1012 vector genome particles per mouse. Three months later, we observed a ∼2 to 10-fold increase of catalase protein and activity in skeletal muscle and the heart. Subcellular fractionation western blot and double immunofluorescence staining confirmed ectopic catalase expression in the mitochondria. Compared with untreated control mice, absolute running distance and body weight normalized running distance were significantly improved in AV.RSV.MCAT infected mice during exhaustive treadmill running. Interestingly, ex vivo contractility of the extensor digitorum longus muscle was not altered. Taken together, we have demonstrated that forced catalase expression in the mitochondria enhances exercise performance. Our result provides a framework for further elucidating the underlying mechanism. It also raises the hope of applying similar strategies to remove excessive, pathogenic free radicals in certain muscle diseases (such as Duchenne muscular dystrophy) and ameliorate muscle disease

    Vitamin D pathway gene polymorphisms, diet, and risk of postmenopausal breast cancer: a nested case-control study

    Get PDF
    INTRODUCTION: Vitamin D receptor (VDR) polymorphisms have been inconsistently associated with breast cancer risk. Whether risk is influenced by polymorphisms in other vitamin D metabolism genes and whether calcium or vitamin D intake modifies risk by genotype have not been evaluated. METHODS: We conducted a nested case-control study within the Cancer Prevention Study II Nutrition Cohort of associations between breast cancer and four VDR single-nucleotide polymorphisms (SNPs), Bsm1,Apa1,Taq1, and Fok1, a poly(A) microsatellite, and associated haplotypes (baTL and BAtS). We also examined one SNP in the 24-hydroxylase gene (CYP24A1) and two in the vitamin D-binding protein (group-specific component [GC]) gene. Participants completed a questionnaire on diet and medical history at baseline in 1992. This study includes 500 postmenopausal breast cancer cases and 500 controls matched by age, race/ethnicity, and date of blood collection. RESULTS: Incident breast cancer was not associated with any genotype examined. However, women with the Bsm1 bb SNP who consumed greater than the median intake of total calcium (≥902 mg/day) had lower odds of breast cancer compared to women with the Bb or BB genotype and less than the median calcium intake (odds ratio 0.61, 95% confidence interval 0.38 to 0.96; p(interaction )= 0.01). Similar interactions were observed for Taq1 (T allele) and the poly(A) (LL) repeat. CONCLUSION: We found no overall association between selected vitamin D pathway genes and postmenopausal breast cancer risk. However, certain VDR gene polymorphisms were associated with lower risk in women consuming high levels of calcium, suggesting that dietary factors may modify associations by VDR genotype

    UHRF genes regulate programmed interdigital tissue regression and chondrogenesis in the embryonic limb

    Get PDF
    The primordium of the limb contains a number of progenitors far superior to those necessary to form the skeletal components of this appendage. During the course of development, precursors that do not follow the skeletogenic program are removed by cell senescence and apoptosis. The formation of the digits provides the most representative example of embryonic remodeling via cell degeneration. In the hand/foot regions of the embryonic vertebrate limb (autopod), the interdigital tissue and the zones of interphalangeal joint formation undergo massive degeneration that accounts for jointed and free digit morphology. Developmental senescence and caspase-dependent apoptosis are considered responsible for these remodeling processes. Our study uncovers a new upstream level of regulation of remodeling by the epigenetic regulators Uhrf1 and Uhrf2 genes. These genes are spatially and temporally expressed in the pre-apoptotic regions. UHRF1 and UHRF2 showed a nuclear localization associated with foci of methylated cytosine. Interestingly, nuclear labeling increased in cells progressing through the stages of degeneration prior to TUNEL positivity. Functional analysis in cultured limb skeletal progenitors via the overexpression of either UHRF1 or UHRF2 inhibited chondrogenesis and induced cell senescence and apoptosis accompanied with changes in global and regional DNA methylation. Uhrfs modulated canonical cell differentiation factors, such as Sox9 and Scleraxis, promoted apoptosis via up-regulation of Bak1, and induced cell senescence, by arresting progenitors at the S phase and upregulating the expression of p21. Expression of Uhrf genes in vivo was positively modulated by FGF signaling. In the micromass culture assay Uhrf1 was down-regulated as the progenitors lost stemness and differentiated into cartilage. Together, our findings emphasize the importance of tuning the balance between cell differentiation and cell stemness as a central step in the initiation of the so-called ?embryonic programmed cell death? and suggest that the structural organization of the chromatin, via epigenetic modifications, may be a precocious and critical factor in these regulatory events.Funding: We thank Montse Fernandez Calderon, Susana Dawalibi, and Sonia Perez Mantecon, for excellent technical assistance. This work was supported by a Grant (BFU2017-84046-P) from the Spanish Science and Innovation Ministry to J.A.M
    corecore