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Abstract

Participation in carbon (C) markets could provide farmers in developing countries incentives for improving soil fertility. However
carbon traders need assurances that contract levels of C are being achieved. Thus, methods are needed to monitor and verify soil C
changes over time and space to determine whether target levels of C storage are being met. Because direct measurement over the large
areas needed to sequester contract amounts of C in soil is not practical, other approaches are necessary. An integrated approach is
described in which an Ensemble Kalman Filter (EnKF) is used to assimilate in situ soil carbon measurements into a stochastic soil C
model to estimate soil C changes over time and space. The approach takes into account errors in in situ measurements and uncertainties
in the model to estimate mean and variance of soil C for each land unit within a larger land area. The approach requires initial estimates
of soil C over space along with uncertainties in these estimates. Model predictions are made to estimate soil C for the next year, in situ soil
C measurements update these predictions using maximum likelihood methods, and the spatial pattern of soil C mean, variance, and
covariance thus evolve over time. This approach can also be used to provide yearly estimates of the changes in soil C over multiple fields,
the variance in those estimates, and aggregate soil carbon mean and variance values each year. In this paper, the use of the EnKF is
shown for an area in Ghana with 12 fields, comparing numbers of fields sampled each year and ways of selecting which fields to sample
each year. The model predicts soil C changes over time using first order decomposition of existing soil C and addition of C from plant
residues. The lowest intensity sampling method (sampling only 1/4 of the fields per year) resulted in the highest level of uncertainty in
aggregate soil C estimate. Rotating sample fields each year improved the performance of the EnKF. These results demonstrated a quan-
tifiable tradeoff between field sampling intensity and uncertainty in aggregate soil C estimates. The framework could be modified to use
more complex biophysical models and to assimilate remote sensing data.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

An accounting system is needed if soil carbon (C)
sequestration is to become an accepted mechanism for
reducing atmospheric CO2 levels (Antle and Uehara,
2002). Such an accounting system must be able to provide
estimates of soil C mass over an area large enough to inter-
est potential C buyers. Although it is impossible to measure
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doi:10.1016/j.agsy.2005.06.023

* Corresponding author.
E-mail address: jimj@ufl.edu (J.W. Jones).
this large mass directly, samples of soil can be collected at
some spatial frequency and taken to the laboratory to mea-
sure sample C concentration (mass fraction basis). Soil C
mass can then be computed by multiplying concentration
by soil bulk density, depth of sampling, and field area.
However, there are a number of problems associated with
such measurements. There are tradeoffs between costs
and accuracy. First, it is costly to collect and analyze sam-
ples from large numbers of fields. A second problem is that
each measurement has a high level of uncertainty; thus it
may be necessary to collect large numbers of samples in
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order to achieve an acceptable level of uncertainty. There is
considerable spatial variability in soil C levels due to spa-
tial variability of soil characteristics and land management
history. Thus, uncertainties in estimates of aggregate soil C
mass may be large unless the design of the monitoring sys-
tem includes a relatively large number of samples over
space. Reducing the number of samples to keep costs low
will inherently result in more uncertainty in estimates of
soil C changes over time.

Another challenging characteristic of this problem is
that yearly changes in soil C are small relative to uncer-
tainty in soil C measurements. Standard errors of C mea-
surements in a field may be larger than annual changes
of soil C. West and Post (2002) found an average soil C
sequestration rate of 570 kg ha�1 yr�1 for no-till vs. con-
ventional tillage when they analyzed data from 67 long-
term experiments from around the world. In a 10-year
study in Burkina Faso, the increase in soil C averaged
116 and 377 kg ha�1 yr�1 for treatments with low and high
levels of both inorganic fertilizer and manure, respectively
(Pichot et al., 1981). Lal (2000) observed annual rates of
soil C increase of about 400 kg ha�1 yr�1 under no-till
management over a 3-year experiment aimed at restoring
soil C in western Nigeria. Jones et al. (2004) computed
measurement standard errors of about 1000 kg ha�1 yr�1

if measurement error is 0.04% on a mass basis, a value in
the mid range of those reported by Yost et al. (2002). Addi-
tional variability could be introduced from field sampling
methods and inherent spatial variability of soil C in a field.
One way to reduce uncertainty would be to use geostatisti-
cal methods, but this could require a relatively large num-
ber of samples in each field being monitored. It may also be
possible to use geostatistical methods to estimate aggregate
soil C over large areas (Yost et al., 2002).

Biophysical models can also be used to estimate soil C
and its changes under different weather, soil, and manage-
ment practices (Parton et al., 1988, 1994; Jones et al.,
2002). However, although these models produce precise
estimates, they are imperfect and their parameters for spe-
cific fields are also uncertain. Thus, errors exist in estimates
of soil C from model predictions as well as from field mea-
surements. Techniques exist to combine models and mea-
surements to obtain better estimates of system states and
model parameters. The Kalman Filter (Maybeck, 1979;
Welch and Bishop, 2002) approach first uses a model to
predict the state of a system, and then uses measurements
to update the estimates, taking into account errors in mea-
surements and predictions.

Variations of the Kalman Filter, originally developed
for linear models, have been developed for non-linear mod-
els (e.g., Albiol et al., 1993; Graham, 2002). One variation,
the Ensemble Kalman Filter (Burgers et al., 1998; Eknes
and Evensen, 2002; Margulis et al., 2002), was used by
Jones et al. (2004) to estimate soil C and a decomposition
rate parameter over time for a single field using a non-lin-
ear model. In that study, Jones et al. (2004) demonstrated
that assimilation of in situ soil C measurements could
reduce errors in soil C estimates at the field scale and
annual changes in C. However, they did not address the
use of the EnKF for a spatially variable area.

The purpose of this paper is to describe and demonstrate
an integrated approach for monitoring soil C over large
agricultural areas, combining in situ sampling and model-
ing. The approach could be used to design a soil C moni-
toring program to meet specific goals and tailored to
specific regional situations by analyzing tradeoffs between
costs of sampling vs. accuracy of aggregate soil C esti-
mates. It could also be used operationally to produce
aggregate estimates of soil C and uncertainty of those esti-
mates. In this paper, we first present the relationships used
in the EnKF and then demonstrate its use for 12 fields in
Ghana. The simple non-linear stochastic soil C model used
by Jones et al. (2004) was extended in this paper to predict
soil C over space and time. The resulting spatio-temporal
model, implemented in the EnKF, inherently takes into
account autocorrelations in soil C among different fields;
an initial estimate of the covariance matrix of state vari-
ables evolves as measurements made over space and time
are assimilated. Results are shown for the area in Ghana
to demonstrate tradeoffs between sampling intensity and
accuracy of estimates using different sampling schemes.

2. Soil C monitoring at the aggregate scale: the Ensemble

Kalman Filter

The problem is to monitor soil C in a specified soil depth
(say 20 cm) over time in an area in which fields are man-
aged to participate in a contract for sequestering C in soils.
Thus, soil C in all participating fields must be aggregated to
produce estimates of total C and its uncertainty in a con-
tract project. A field in the contract area is defined as an
area of land that is managed as a unit. This does not mean
that the field is uniform, but instead that its boundaries are
delineated and the farmer attempts to manage it uniformly.
The total C in the contract is the sum of C in each of these
fields. The various fields may vary in size, crops, and soil C
levels. The EnKF provides the integrative framework for
estimating soil C.

There are three main components in the EnKF: data,
models and assimilation/estimation. For this application,
data would include field measurements of soil C, but it
could also include measurement of other variables using
field sampling or remote sensing. Measurements may not
be taken in all fields in a project in any year, and samples
may not be taken every year. Accuracy will be affected by
sampling design. The model in the EnKF predicts the state
of the system, the mass of soil C in each field to a specified
depth of soil (kg[C] ha�1), as it changes with time (over
years, in this case). Even if measurements are not made
in each field each year, the model predicts soil C in each
field every year. The assimilation component combines
data and model predictions using procedures that minimize
estimation errors. The predicted state of the system is
updated using measurements at times when they are made;
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model parameters can also be updated. Soil C sequestra-
tion is the difference between aggregate soil C at a point
in time and initial soil C at the beginning of a project.

Fig. 1 shows the basic scheme of the EnKF. Each field
in the project is included in the EnKF as a discrete spatial
unit with its own soil C mass that varies over time due to
natural processes and management activities. The EnKF
includes a model that describes the dynamic changes of
soil C for each field. Management may vary over time
(i.e., crop rotations) and over space. Soil C and model
parameters may be correlated over space. Prior knowl-
edge of this spatial correlation helps the EnKF results
converge to an optimal estimate in less time and cost than
the case when there is no spatial correlation. Such corre-
lation is taken into account explicitly in the EnKF as
shown below.

The model may be simple or complex; the EnKF proce-
dure is the same for both, although details of data assimi-
lation calculations depend on the model and
measurements. Jones et al. (2004) developed the EnKF
for a single field using a simple stochastic model with one
state variable (soil C) and one uncertain parameter. Koo
et al. (2003) demonstrated the use of the EnKF with the
DSSAT model (Jones et al., 2003; Gijsman et al., 2002)
to simulate daily changes in soil C depending on daily
weather data, soil properties, and crop management for
each field in a hypothetical study area. This model simu-
lates crop biomass production and soil C changes over
time, and can account for crop rotations and other varia-
tions in management. There is an advantage of using this
type of model in that it can be calibrated to simulate fluc-
tuations in biomass production and changes in soil C from
year to year based on weather variability. It also can be tai-
lored to new areas due to the physical and physiological
relationships in the model. But, this detailed soil-crop
model requires parameters and input data that may be dif-
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Fig. 1. Schematic diagram of the framework for integrating soil C sampling an
is used to combine information from the different sources to produce estimate
estimate of the uncertainty (variance) in this estimate.
ficult to obtain for each field (soil properties, daily weather,
and management) and a simple model may be preferred.
Data that could be assimilated depend on the model. In
the case of the simple models presented by Jones et al.
(2004) and Bostick et al. (2003), remote sensing data could
be used to estimate crop biomass, an input to those models.

The EnKF assimilation component uses inputs from the
model as well as from in situ measurements to improve soil
C estimates and model predictions over time. Periodic field
measurements of soil C in all or a subset of fields improve
estimates of soil C and model parameters so that future
predictions are more accurate. These measurements are
used to adjust predictions of soil C, not only in those fields
where it is measured but also in other fields that were not
sampled. The EnKF uses Monte-Carlo simulation to gen-
erate an ensemble of state variable realizations that are
each propagated over time and assimilated with measure-
ments using the Kalman update equations.

2.1. Soil carbon model

The model in the EnKF is stochastic; that is the vari-
ables in the model are random and can be characterized
by a probability density function. Knowledge of the uncer-
tainty in model predictions is necessary as is knowledge of
the uncertainty in measurements of soil C and other vari-
ables. In this paper, we extend the model published by
Jones et al. (2004) for multiple fields and consider only
in situ sampling of soil C in the data assimilation process
shown schematically in Fig. 1.

The model has one state variable in each field i, the
mean mass of carbon per ha (X(i, t), kg[C] ha�1) in the
top 20 cm of soil. Changes in soil C are simulated dynam-
ically on a yearly basis (time step of one year) for each field.
The model also has one unknown parameter for each field,
R(i), the fraction of soil C that is decomposed per year
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(yr�1). It is assumed that R varies among fields, is constant
over time, but is not known with certainty. The equations
that describe the dynamics of this system are adapted from
Jones et al. (2004), explicitly showing variable designations
for each field:

X modði; tÞ ¼ X modði; t � 1Þ � RðiÞ � X modði; t � 1Þ
þ b � Uði; t � 1Þ þ emodði; tÞ

RðiÞ ¼ R0ðiÞ þ eRðiÞ
ð1Þ

where Xmod(i, t) is the modeled soil C of field i at time t; i is
the identifier for each field (i = 1, 2, 3, . . ., F); F is the total
number of fields; b is the fraction of crop residue C that
was added to the soil in year t � 1 and remains in year t;
U(i, t � 1) is the amount of C in crop residue that is added
to the soil in year t � 1 in field i; emod(i, t) is the model error
term for field i and time t; R(i) is the rate parameter for
field i; R0(i) is the initial estimate of the parameter R for
field i; eR(i) is the error in the initial estimate for R, field i.

Model error (emod(i, t)) includes uncertainties in
U(i, t � 1) and b as well as uncertainties due to the fact that
the model is a simplification of reality. We assume that
model errors and the parameter estimator error are nor-
mally distributed with zero-mean and are not correlated.
Thus:

emodði; tÞ � Nð0; r2
modðiÞÞ

eRðiÞ � Nð0; r2
RðiÞÞ

ð2Þ

where r2
modðiÞ is the variance of model error for soil C in

field i, r2
RðiÞ is the variance of error for estimate of param-

eter R in field i.
The model error (emod(i, t)) is a random process that

changes over time but is uncorrelated with time (i.e., white
noise), whereas the decomposition rate parameter error
(eR(i)) is a random variable that does not change with time.

An important characteristic of the stochastic model is
that state variables may be correlated over space. The spa-
tial correlation is expressed in the EnKF as the covariance
matrix among all state variables; an estimate of the covari-
ance matrix is given by P(t). This matrix has diagonal ele-
ments that are estimates of variance of soil C estimate at
time t in each of the F fields and estimates of variance of
estimates of the uncertain soil parameter at time t in each
field. This matrix is written as:
PðtÞ ¼

P XX ;tð1; 1Þ � � � P XX ;tð1; F Þ P XR;tð1; 1Þ � � � P

..

.
ðXX Þ ..

. ..
.

ðXRÞ
P XX ;tðF ; 1Þ � � � P XX ;tðF ; F Þ P XR;tðF ; 1Þ � � � P

P RX ;tð1; 1Þ � � � P RX ;tð1; F Þ P RR;tð1; 1Þ � � � P

..

.
ðRX Þ ..

. ..
.

ðRRÞ
P RX ;tðF ; 1Þ � � � P RX ;tðF ; F Þ P RR;tðF ; 1Þ � � � P

266666666664
For example, the variable PXX,t(1, 1) is an estimate of the
variance of soil C estimate in field 1 at time t, and
PXX,t(1, F) is the estimate of covariance between soil C in
field 1 and soil C in field F at time t. The variable PRR,t(1, 1)
is the variance of the estimate of soil C decomposition rate
parameter at time t in field 1 and PRR,t(1, F) is the covari-
ance between estimates of the decomposition rate parame-
ter in fields 1 and F at time t. The PXR,t(1, 1) is an estimate
of the covariance between soil C and R in field 1 at time t.

Initial estimates are needed for all terms in this covari-
ance matrix (P(0)). The diagonal elements are more easily
determined since they are variances of estimates of soil C
and R. However, obtaining initial estimates of non-diago-
nal elements (e.g. covariance of soil C in different fields,
R in different fields, or soil C and R in different fields)
requires an understanding of the spatial structure of vari-
ables and the inter-variable correlations. For initializing
soil C, spatial structure and correlations can be estimated
in part by geostatistical analyses of spatial soil C data. In
general, soil C will likely be correlated among fields. Yost
et al. (1993) showed correlations of soil C over distances
of 10 km or more in Hawaii. In a companion study,
Bostick (personal communication) found spatial correla-
tion of soil C up to 1 km in Mali.

Note that the distance between fields is not explicit in
Eq. (3). After the covariance matrix is initialized, distance
between fields is not needed to calculate the evolution of
the covariance matrix. Instead, the covariance matrix can
be calculated at each time step from the multiple realiza-
tions of the Monte-Carlo simulation.

2.2. Measurements

Soil C measurements may be made each year or less fre-
quently in all or a fraction of the fields; measurements of
R(i) are not possible. Thus, the model has 2F variables that
are to be estimated at each time t (Xmod(i, t) and R(i)). It is
necessary to express the observed soil C values in terms of
the true value and measurement error. This measurement
equation is written as:

X obsði; tÞ ¼ X ði; tÞ þ eobsði; tÞ ð4Þ
where Xobs(i, t) is the measured soil C of field i at time t;
eobs(i, t) is the measurement error term for field i at time
t; X(i, t) is the true soil C in field i at time t.
XR;tð1; F Þ
..
.

XR;tðF ; F Þ
RR;tð1; F Þ

..

.

RR;tðF ; F Þ

377777777775
ð3Þ
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It is assumed that the soil C measurement errors are
zero-mean, normally distributed, independent in time and
space, and independent from Xmod(i, t) and R(i), thus:

eobsði; tÞ � Nð0; r2
obsðiÞÞ

where r2
obsðiÞ is the variance of soil C measurement in field i.

These equations explicitly define the relationships
between model state variables and measurements, and they
form the basis for including measurement error in the
EnKF. One does not know X(i, t), the true soil C values
in each field at time t. The model, Eq. (1), estimates the true
field-specific soil C values, and Eq. (4) models measure-
ments; both have uncertainties.

Measurements (or estimates) of biomass production are
also needed for each field i and for each year t (U(i, t)) for
simulating the model for each field (Eq. (1)). Errors in mea-
suring U(i, t) are included in the model prediction error,
emod(i, t) in this paper.

2.3. Data assimilation

The data assimilation step updates model-predicted esti-
mates of all state variables at any time when measurements
are made. This is written mathematically as:

bX ð1; tÞ
..
.

bX ðF ; tÞbRð1Þ
..
.

bRðF Þ

0BBBBBBBBBBB@

1CCCCCCCCCCCA
¼

X modð1; tÞ
..
.

X modðF ; tÞ
Rð1Þ

..

.

RðF Þ

0BBBBBBBBBB@

1CCCCCCCCCCA
þ

K1;1ðtÞ � � �K1;M ðtÞ
..
.

KF ;1ðtÞ � � �KF ;M ðtÞ
KFþ1;1ðtÞ � � �KFþ1;M ðtÞ

..

.

K2F ;1ðtÞ � � �K2F ;M ðtÞ

266666666664

377777777775
�

X obsð1; tÞ�X modð1; tÞ
..
.

X obsðM ; tÞ�X modðM ; tÞ

0BB@
1CCA

ð5Þ
where bX ði; tÞ is the updated (filtered) estimate of soil C in
field i at time t, bRðiÞ is the updated (filtered) estimate of
decomposition rate in field i at time t, Ki,j(t) is the Kalman
gain elements at time t and M is the number of measure-
ments made. In this example M is less than or equal to F

since the only measurement is soil C and there are F fields
that could be measured.

This equation is written for the case in which soil C is mea-
sured in each of M fields. The bracket to the far right in Eq.
(5) expresses the differences between observed and predicted
soil C values for each sampled field. Expanding this equation
for bX ð1; tÞ, one can see that the updated soil C value is the
predicted value plus the sum of each Kalman gain factor
multiplied by the difference between observed and predicted
soil C for each field in which a measurement is made. Thus, if
soil C values are spatially correlated, the Kalman gain ele-
ments, K, and measurements in each field will influence
updated values of soil C and R in all fields, measured or
not. When the component K values are small, updated state
variable values will be near those that were predicted by the
model. When the K values are large, updated state variable
values will be closer to measured values.

The Kalman gain is computed from the covariance
matrix, model predictions, and measurements. Written in
matrix notation, the Kalman gain is:
KðtÞ ¼ PðtÞHðtÞT½HðtÞP ðtÞHðtÞT þ W ðtÞ��1 ð6Þ
where K(t) is the Kalman gain matrix, 2F rows and M col-
umns; H(t) is the measurement matrix, relating observa-
tions to model state variables; W(t) is the measurement
error matrix.

The measurement error matrix (W(t)) is an M · M

matrix with diagonal elements of r2
obsðiÞ and all other ele-

ments equal to 0 (measurements across fields are indepen-
dent from each other). The measurement matrix that
relates model variables to observations, H(t), is written as:

ð7Þ

The number of rows in the H(t) matrix is equal to the num-
ber of measurements. The number of columns is equal to
the total number of states in the model, including all
Xmod(i, t) and R(i), in this case, 2F columns. Note that all
elements in the right half of the matrix are 0 because R is
not measured. In the left half of the matrix, values could
be 0 or 1. For example, the value of 1 at (2, 2) means that
soil C was measured in field 2. If all diagonal values in the
left half are 1, soil C in each field is measured.

3. Implementation of the ensemble Kalman Filter

In the EnKF, an ensemble of states is first created for
each field using an unconditional simulation method, such
as sequential Gaussian simulation (Goovaerts, 1997). This
is based on the underlying spatial structure obtained from
initial sampling and geostatistical analyses and on inter-
variable correlations between soil C and R. Afterward,
each ensemble member is updated using the model, one
time step at a time. Propagation of predicted variances
and covariances occurs through propagation of ensemble
members for each field. The Kalman update matrix is com-
puted (Margulis et al., 2002) and used to update each
ensemble member. Thus, state estimates and their variances
and covariances are automatically updated.

The EnKF calculations for this problem require several
steps. First, a geostatistical analyses is performed on the
measured soil C at the start of a project to obtain a semi-
variogram model that represents the underlying spatial
structure of soil C. Then, the model and EnKF are initial-
ized. Using the variogram model, a set of ensemble mem-
bers of soil C and decomposition rate constant R are
stochastically simulated at time 0 for each field. The mean
and variance of initial soil C and R are needed for each
field as well as the inter- and intra-variable correlations
across all fields to perform this step, and the simulated
ensemble should have the same spatial structure as
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Fig. 2. Twelve fields in Wa, Ghana in which each field was sampled in
2003 for estimation of soil C (source: J. Naab, SARI, Wa, Ghana). Points
within each field are where individual samples were taken.
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measured soil C. Next, estimates of inputs needed for the
model are obtained. In our example, biomass produced in
each field is an input in Eq. (1) and would need to be mea-
sured or estimated. Remote sensing could potentially be
used, since it may not be practical to measure biomass
in each field each year. In our example, we assumed that
it was constant over time and space. Eq. (1) is used to sim-
ulate soil C for the next time step for each ensemble mem-
ber, which are then used to compute variance and
covariance of soil C and R across all fields. If soil C mea-
surements are not made at this time step, steps 3 and 4 are
repeated. Measurements, if available, are used to compute
the Kalman Gain matrix, which is then used to update soil
C for every ensemble member and for every field. Based
on the updated ensemble, variances and covariances are
computed. Finally, when aggregate estimates of soil C
means and variances are needed, they are computed from
ensembles of aggregate soil C values by summing mean
soil C over all fields. The variance of aggregate soil C
across spatially correlated fields is computed by following
equation (Wackerly et al., 2002):

Var
XF

i¼1

ai
bX i

 !
¼
XF

i¼1

a2
i VarðbX iÞ þ 2

XX
i<j

aiajCovðbX i
bX jÞ

ð8Þ

where the double sum is over all pairs of fields (i, j) with
i < j, F is the total number of fields, ai is the area of field
i, and bX i is the updated soil carbon estimate in the field i.

The procedure for the slightly more complex soil C
model presented by Bostick et al. (2003) and for the
DSSAT model are nearly the same. However, details
related to measurements, the formula for the Kalman Gain
matrix, and parameters to update vary among models. If
the model simulates both soil C and crop biomass, the mea-
surements of biomass can be used to improve model per-
formance by refining one or more crop model parameters
for each field as measurements are made (Koo et al., 2003).
4. Example application of the EnKF in Ghana

The purpose of this example is to demonstrate the use
of the EnKF for estimating aggregate soil C over multiple
fields and the uncertainty of those estimates under different
field sampling intensities. The EnKF was implemented
using the simple model described above in an area near
the community of Wa in northwestern Ghana (lat. 10.02,
long. �2.38). Measurements were made in 12 fields (each
15 m · 30 m in size) to estimate initial soil C; from 20 to
30 samples were taken from each field. These fields were
part of an experiment conducted by J. Naab (personal
communication) on three farms in 2003. Fig. 2 shows the
12 fields with points where soil C samples were taken. Soil
samples from the top 20 cm depth of soil were analyzed
using the Walkley-Black method (Jackson, 1958) to quan-
tify concentration of C in each sample (lg[C] g[soil]�1).
These data were used to estimate initial conditions for
use in the EnKF.

4.1. Setting initial conditions

We used GSTAT (Pebesma and Wesseling, 1998) to esti-
mate initial soil C mean and variance for each field. The
measurement data were used to create a semivariogram,
which was fit to a spherical model, which had a correlation
range of 53 m (Fig. 3). The nugget effect in the semivario-
gram was ignored because we wanted the EnKF ensemble
realizations to represent the true state of the underlying
spatial structure, not measurement uncertainty at a point.
The spherical model was then used with block kriging to
estimate mean initial soil C for each field, which ranged
from 0.33% to 0.63% (Table 1). Mean and standard devia-
tion of soil C (in kg ha�1) for each of the 12 fields was com-
puted by multiplying the percentage values in Table 1 by
sample depth, bulk density, field area, and a unit conver-
sion factor. Because bulk density was not measured, we
assumed a constant bulk density value of 1.35 g cm�3 for
the analyses, a value measured by J. Naab for similar soils
in the area. More research is needed to determine the
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Fig. 3. Semivariogram and model calculated from the 2002 soil C measurements in Wa, Ghana.

Table 1
Soil C measurement standard deviation and block krig estimates of soil C and standard deviation in each of 12 fields in the study site

Farm Field Number of samples Measurement standard deviation (%) Initial soil C by block kriging (%)

Mean Standard deviation

A A1 30 0.06 0.58 0.19
A A2 28 0.08 0.48 0.22
A A3 28 0.06 0.63 0.20
A A4 30 0.08 0.54 0.16

B B1 20 0.06 0.54 0.22
B B2 20 0.05 0.58 0.21
B B3 20 0.05 0.50 0.23
B B4 20 0.05 0.53 0.20

C C1 20 0.04 0.38 0.18
C C2 20 0.04 0.33 0.18
C C3 20 0.06 0.51 0.19
C C4 20 0.05 0.56 0.19
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sensitivity to estimates of soil C changes over time when
bulk density varies spatially but is assumed constant.

Realizations of C and R were generated to initialize the
model variables using unconditional sequential Gaussian
simulation in GSTAT (Pebesma and Wesseling, 1998).

The average semivariogram from the M realizations
approximates the semivariogram (c) obtained from the spa-
tial analysis of field samples (Goovaerts, 1997). To generate
these initial realizations in the ensemble, initial estimates of
four types of underlying correlations among variables
across fields were needed: correlations between (1) soil C
in different fields, (2) R in different fields, (3) soil C and R

in the same field, and (4) soil C and R in different fields.
These correlations are used to estimate the covariance
matrix P(0) (Eq. (3)) as follows. Correlations between mean
soil C in different fields were obtained from a geostatistical
analysis of soil C measurements (Fig. 3). Correlations
between R among fields were assumed to have the same spa-
tial structure as soil C (e.g. same spherical model and same
correlation range). Changes in soil C was assumed to be per-
fectly correlated with changes in R in a given field. Further-
more, the correlations were assumed to be negative. This
assumption was based on the nature of model behavior
(Eq. (1)); a high value of R degrades soil C rapidly and con-
sequently reduces soil C. Correlations between soil C and R

in different fields were assumed to be zero.

4.2. Measurements

We did not have a time series of soil C measurements for
these fields to use in the EnKF. Thus, we first used the
model (Eq. (1)) to generate a single 20-year time series of
‘‘true’’ soil C values for each field, and then generated mea-
surements assuming that measurement errors are normally
distributed around true values and that true values of soil
C have the spatial structure estimated by the spherical
model. We randomly chose one realization out of the
ensemble generated from Eq. (1) as the true soil C values.
The true value of R for each field was generated from the
true soil C value at time 0 and the inter-variable correlation
between soil C and R (Table 2). Note that the true mean
value of R across field (Rtrue) was assumed as 0.020, but



Table 2
Initial conditions for variables used in the EnKF simulation case study in Ghana

Farm Field Xtrue(i, 0) (kg ha�1) r2
obsðiÞ ððkg ha�1Þ2Þ r2

modðiÞ ððkg ha�1Þ2Þ Rtrue(i) (yr�1) RðiÞ ðyr�1Þ rR(i) (yr�1) U(i, t) (kg ha�1) b (yr�1)

A A1 14,339 3,500,000 20,000 0.02268 0.01492 0.0066 2000 0.2
A A2 13,333 4,900,000 20,000 0.02472 0.01494 0.0066 2000 0.2
A A3 16,157 2,800,000 20,000 0.01900 0.01495 0.0066 2000 0.2
A A4 18,139 6,000,000 20,000 0.01498 0.01501 0.0066 2000 0.2

B B1 18,907 3,300,000 20,000 0.01343 0.01503 0.0066 2000 0.2
B B2 16,294 2,400,000 20,000 0.01872 0.01497 0.0066 2000 0.2
B B3 15,895 2,100,000 20,000 0.01953 0.01502 0.0066 2000 0.2
B B4 16,109 2,300,000 20,000 0.01910 0.01501 0.0066 2000 0.2

C C1 12,973 1,500,000 20,000 0.02545 0.01479 0.0066 2000 0.2
C C2 13,313 1,400,000 20,000 0.02476 0.01470 0.0066 2000 0.2
C C3 14,086 2,800,000 20,000 0.02320 0.01499 0.0066 2000 0.2
C C4 14,918 2,000,000 20,000 0.02151 0.01519 0.0066 2000 0.2

Table 3
Definition of cases compared in this study

Case no. Description Fields sampled per year

1 (Base case) All fields 12
2 Same fields each year 3
3 Rotating fields each year 3
4 No field sampling 0

For example, case 2 refers to sampling three fields per year and returning
to the same three fields each year.
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the initial mean of R estimates across fields (R) was set as
0.015 to reflect our imperfect knowledge of the true value
for evaluating the EnKF. Following the example of Jones
et al. (2004), we set constant values for U(i, t) and b of
2000 kg ha�1 and 0.20, respectively, for each field to gener-
ate the ‘‘true’’ values (Table 2). Then, we used Eq. (4) to
generate the 20-year time series of observations.

4.3. Measurement intensity comparisons

A soil C measurement scheme may achieve an accept-
able level of uncertainty by intensively sampling fields over
space and time. However, resources (i.e. time and cost) for
conducting measurements are often limited, so the mea-
surement scheme should be optimized in a way that mini-
mizes uncertainties at acceptable costs. To understand the
impact of different measurement schemes on the uncer-
tainty of soil C estimates, we varied the fraction of fields
sampled each year: (1) all fields and (2) 1/4th of the fields
(three in this case). For the latter, we used two ways of
selecting which fields to measure each year: (1) return to
the same three fields each year and (2) rotate fields yearly
so that all fields are sampled at approximately the same fre-
quency. A case without any measurement was also ana-
lyzed to demonstrate how the model (Eq. (1)) behaves in
a stochastic simulation. Thus, four cases were analyzed
(Table 3). The value of measurement error in this example
was estimated based on the assumption that one composite
soil sample, composed of five mixed sub samples, is taken
in each sampled field to measure soil C.
4.4. Simulation runs

Parameters for the soil C model are the same as that
used by Jones et al. (2004) for the single field case, except
for initial estimates of soil C and the uncertainties associ-
ated with measurements and initial conditions. For each
case in Table 3, 1000 realizations of an ensemble were cre-
ated using initial conditions, error covariance matrix, and
parameters as explained earlier. Twenty years of simula-
tions were used. Estimates of soil C and R means, vari-
ances, and covariances were computed at each time step
from the 1000 realizations. Finally, aggregate soil C over
all fields and its variance were computed from the realiza-
tions using Eq. (8). Comparisons of the different sampling
schemes were made using estimates of uncertainty in aggre-
gate soil C over all fields.

4.5. Results

Fig. 4 shows estimates of aggregate soil C for the 12
fields in Ghana in each of four cases. The dark line is the
ensemble mean estimate of soil C and the dotted line is
the true value. The two grey lines around the ensemble
mean estimate represent plus and minus one standard devi-
ation of the ensemble estimate. The Xs represent estimates
of aggregate soil C based solely on measurements. When a
field was not measured in a given year, its soil C was
assumed to be the mean of the other measurements for that
year. In all cases, the EnKF produced estimates that were
smoother and closer to true values than the measured val-
ues. This was also true for each field in the study area (not
shown).

Fig. 4(a) shows the case when all 12 fields were sampled
each year. Note that variance decreased over time as more
data were assimilated. Uncertainties were much larger
when the same three fields were sampled yearly
(Fig. 4(b)). It is interesting to note that variance of the esti-
mate of soil C in a field that was not measured behaved
differently from the variance of estimates in fields that
were measured. Compared to the case when all fields were



Fig. 4. Aggregated soil C sequestration in each of four cases over the study region in Ghana (0.54 ha). Aggregate measurements were based only on fields
that were measured: (a) all 12 fields were measured; (b) the same three fields were measured yearly; (c) three fields were measured each year but rotated;
(d) no measurements were made.
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measured (Fig. 4(a)), soil C was overestimated when only 3
of the 12 fields were sampled yearly (Figs. 4(b) and (c)) and
when no field was sampled (Fig. 4(d)). This was because the
initially underestimated R values (Table 3) were not
adjusted adequately by the EnKF. Note that underestima-
tion of R causes slow decomposition of soil organic matter
and increases the quantity of soil C remaining in the C
pool. However, when the three sampled fields were rotated
each year, the accuracy of estimates was dramatically
improved (Fig. 4(c)) compared to the non-rotated case
where only three fields were measured (Fig. 4(b)).

Fig. 5(a) depicts the ensemble variance for each field
when the same three fields are measured each year. The
bottom cluster shows that ensemble variances decreased
for the three measured fields. The middle cluster shows
a Case 2: 3/12 fields
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Fig. 5. Ensemble variances of soil carbon dynamics for each field comparing th
sample fields were rotated each year (b).
fields that were near the measured fields. In those fields,
ensemble variances initially decreased but later increased
slightly. The top cluster shows the variances for fields that
were not adjacent to measured fields. Initial variances were
highest for these fields, and increased over time. When all
fields were measured each year, estimated soil C variance
decreased for each field, similar to results shown by Jones
et al. (2004) for a single field (data not shown).

Rotating the three fields that were sampled each year
had a dramatic effect on the evolution of variances for each
field. Fig. 5(b) shows that variance remained low for each
field over the 20 years of simulations. Variance of aggregate
soil C estimate decreased when field sampling was rotated,
as shown in Fig. 4(c) compared with Fig. 4(b). In both of
these cases, only three fields were sampled each year. The
b Case 3: 3/12 fields rotated
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reason for this behavior is that the fields were spatially cor-
related within a relatively short correlation range. Thus,
there was little information in the covariance matrix for
adjusting predicted soil C for non-measured fields that
were not adjacent to measured fields. By rotating the fields
sampled from year to year, each was sampled at some point
in time, and this information provided the basis for filtering
soil C estimates and adjusting the variance estimate.

5. Discussion

Our original rationale for studying the use of the EnKF
approach was that we would have remote sensing esti-
mates of biomass that could be assimilated along with
in situ soil samples. We also initially planned to use the
DSSAT-Century model in the EnKF to take advantage
of the ability of that model to account for specific crop
management, soil variability and climate variability. Our
original use of the simple soil C model was to gain expe-
rience with this approach. However, we now believe that
the simple models (with one or two soil C state variables)
may be as effective as more complex biophysical models
when applied over large areas with considerable spatial
variability and uncertainty in model inputs. In addition,
the time required to implement simple models is much less
than that for the more complex DSSAT-Century model.
The amount of time required to compute the EnKF for
an area with more than several hundred fields is expected
to be prohibitive for practical use. One benefit of the
EnKF is its ability to use a model to constrain how fast
soil C can change over time and space, thus smoothing
estimates when noisy measurements are expected and
when measurements cannot be made for every field.
Although additional research will reveal more about capa-
bilities and limitations of this approach, we have con-
cluded that it could be a powerful tool for operational
programs in which estimates of soil C are needed over
space and time.

Some observations about the use of this approach for
estimating soil C are made. First, in an EnKF, every field
or point must be included in the analysis if estimates of
system states are needed at those points. Measurements
may only be made at a fraction of those points. But,
the covariance matrix structure provides information for
estimating states at points that are not measured when
there is spatial correlation among fields, similar to kriging
using geostatistics. Secondly, in the EnKF, a stochastic
spatio-temporal model describes the evolution of system
states, variances, and covariances over time and space.
Even when measurements are not made in a particular
year, this method provides estimates of systems states
and their uncertainties. One difficulty in implementing
the EnKF for this type of problem is the necessity of hav-
ing reliable initial estimates of all system states (for both
measured and non-measured fields) and the corresponding
initial covariance matrix. Although the EnKF does not
necessarily require georeferenced data, the use of spatial
sampling and geostatistical analysis methods are necessary
to initialize the EnKF for this soil C sequestration
problem.

If there is little correlation among system states, the
power of the EnKF is limited and the design of an appro-
priate sampling scheme is very important. The EnKF
clearly showed that if the same subset of fields is sampled
each year, there is little information to improve predicted
soil C in non-measured fields as the system evolves. In this
case, rotating sample fields over time was superior to sam-
pling the same fields each year. When only 3 of the 12 fields
were sampled each year, rotating the sampled fields greatly
reduced the estimated standard deviation of aggregate soil
C. Finally, one could implement the EnKF by measuring
and modeling soil C at points or by measuring and model-
ing average soil C in fields. In our case study, the EnKF
estimated average soil C for each field, our basic unit of
analysis. These values were aggregated by multiplying
areas by average soil C. The rationale for our use of the
field in this study is that fields are managed as units, and
we assumed that management was uniform across each
field. This may not be the case. However, the landscape
in most agricultural settings is composed of patches of dif-
ferent land use and management practices, which cause dis-
continuities in soil C over space. Thus, assumptions that
soil C varies smoothly over space and is stationary are
questionable. Nevertheless, it may be possible to decom-
pose the landscape into different land use and management
types and treat soil C as a pseudo continuous variable over
space for spatial analysis purposes, avoiding dissimilar land
units. Data need to be collected over large areas with suffi-
cient sampling intensity to quantify spatial variability at
short and long distances (Walter et al., 2003). Additional
research is needed to evaluate discrete vs. continuous state
variables in the EnKF.
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