670 research outputs found

    Establishing a basis for ecosystem management in the western Indian Ocean

    Get PDF
    An ambitious multinational programme, with generous funding for an initial five years, aims to provide understanding of marine resources for the benefit of impoverished island and coastal populations in a much-neglected ocean region

    MAGE-A cancer/testis antigens inhibit MDM2 ubiquitylation function and promote increased levels of MDM4

    Get PDF
    Melanoma antigen A (MAGE-A) proteins comprise a structurally and biochemically similar sub-family of Cancer/Testis antigens that are expressed in many cancer types and are thought to contribute actively to malignancy. MAGE-A proteins are established regulators of certain cancer-associated transcription factors, including p53, and are activators of several RING finger-dependent ubiquitin E3 ligases. Here, we show that MAGE-A2 associates with MDM2, a ubiquitin E3 ligase that mediates ubiquitylation of more than 20 substrates including mainly p53, MDM2 itself, and MDM4, a potent p53 inhibitor and MDM2 partner that is structurally related to MDM2. We find that MAGE-A2 interacts with MDM2 via the N-terminal p53-binding pocket and the RING finger domain of MDM2 that is required for homo/hetero-dimerization and for E2 ligase interaction. Consistent with these data, we show that MAGE-A2 is a potent inhibitor of the E3 ubiquitin ligase activity of MDM2, yet it does not have any significant effect on p53 turnover mediated by MDM2. Strikingly, however, increased MAGE-A2 expression leads to reduced ubiquitylation and increased levels of MDM4. Similarly, silencing of endogenous MAGE-A expression diminishes MDM4 levels in a manner that can be rescued by the proteasomal inhibitor, bortezomid, and permits increased MDM2/MDM4 association. These data suggest that MAGE-A proteins can: (i) uncouple the ubiquitin ligase and degradation functions of MDM2; (ii) act as potent inhibitors of E3 ligase function; and (iii) regulate the turnover of MDM4. We also find an association between the presence of MAGE-A and increased MDM4 levels in primary breast cancer, suggesting that MAGE-A-dependent control of MDM4 levels has relevance to cancer clinically

    The Energetics of Li Off-Centering in K1x_{1-x}Lix_xTaO3_3; First Principles Calculations

    Full text link
    K1x_{1-x}Lix_{x}TaO3_3 (KLT) solid solutions exhibit a variety of interesting physical phenomena related to large displacements of Li-ions from ideal perovskite A-site positions. First-principles calculations for KLT supercells were used to investigate these phenomena. Lattice dynamics calculations for KLT exhibit a Li off-centering instability. The energetics of Li-displacements for isolated Li-ions and for Li-Li pairs up to 4th neighbors were calculated. Interactions between nearest neighbor Li-ions, in a Li-Li pair, strongly favor ferroelectric alignment along the pair axis. Such Li-Li pairs can be considered "seeds" for polar nanoclusters in KLT. Electrostriction, local oxygen relaxation, coupling to the KT soft-mode, and interactions with neighboring Li-ions all enhance the polarization from Li off-centering. Calculated hopping barriers for isolated Li-ions and for nearest neighbor Li-Li pairs are in good agreement with Arrhenius fits to experimental dielectric data.Comment: 14 pages including 10 figures. To Physical Review B. Replaced after corrections due to referees' remark

    An Anti-Human ICAM-1 Antibody Inhibits Rhinovirus-Induced Exacerbations of Lung Inflammation

    Get PDF
    Human rhinoviruses (HRV) cause the majority of common colds and acute exacerbations of asthma and chronic obstructive pulmonary disease (COPD). Effective therapies are urgently needed, but no licensed treatments or vaccines currently exist. Of the 100 identified serotypes, ∼90% bind domain 1 of human intercellular adhesion molecule-1 (ICAM-1) as their cellular receptor, making this an attractive target for development of therapies; however, ICAM-1 domain 1 is also required for host defence and regulation of cell trafficking, principally via its major ligand LFA-1. Using a mouse anti-human ICAM-1 antibody (14C11) that specifically binds domain 1 of human ICAM-1, we show that 14C11 administered topically or systemically prevented entry of two major groups of rhinoviruses, HRV16 and HRV14, and reduced cellular inflammation, pro-inflammatory cytokine induction and virus load in vivo. 14C11 also reduced cellular inflammation and Th2 cytokine/chemokine production in a model of major group HRV-induced asthma exacerbation. Interestingly, 14C11 did not prevent cell adhesion via human ICAM-1/LFA-1 interactions in vitro, suggesting the epitope targeted by 14C11 was specific for viral entry. Thus a human ICAM-1 domain-1-specific antibody can prevent major group HRV entry and induction of airway inflammation in vivo

    Chloroquine activates the p53 pathway and induces apoptosis in human glioma cells

    Get PDF
    Glioblastoma is the most common malignant brain tumor in adults. The currently available treatments offer only a palliative survival advantage and the need for effective treatments remains an urgent priority. Activation of the p53 growth suppression/apoptotic pathway is one of the promising strategies in targeting glioma cells. We show that the quinoline derivative chloroquine activates the p53 pathway and suppresses growth of glioma cells in vitro and in vivo in an orthotopic (U87MG) human glioblastoma mouse model. Induction of apoptosis is one of the mechanisms underlying the effects of chloroquine on suppressing glioma cell growth and viability. siRNA-mediated downregulation of p53 in wild-type but not mutant p53 glioblastoma cells substantially impaired chloroquine-induced apoptosis. In addition to its p53-activating effects, chloroquine may also inhibit glioma cell growth via p53-independent mechanisms. Our results clarify the mechanistic basis underlying the antineoplastic effect of chloroquine and reveal its therapeutic potential as an adjunct to glioma chemotherapy

    Structural analysis of MDM2 RING separates degradation from regulation of p53 transcription activity

    Get PDF
    MDM2–MDMX complexes bind the p53 tumor-suppressor protein, inhibiting p53's transcriptional activity and targeting p53 for proteasomal degradation. Inhibitors that disrupt binding between p53 and MDM2 efficiently activate a p53 response, but their use in the treatment of cancers that retain wild-type p53 may be limited by on-target toxicities due to p53 activation in normal tissue. Guided by a novel crystal structure of the MDM2–MDMX–E2(UbcH5B)–ubiquitin complex, we designed MDM2 mutants that prevent E2–ubiquitin binding without altering the RING-domain structure. These mutants lack MDM2's E3 activity but retain the ability to limit p53′s transcriptional activity and allow cell proliferation. Cells expressing these mutants respond more quickly to cellular stress than cells expressing wild-type MDM2, but basal p53 control is maintained. Targeting the MDM2 E3-ligase activity could therefore widen the therapeutic window of p53 activation in tumors

    The responses of cancer cells to PLK1 inhibitors reveal a novel protective role for p53 in maintaining centrosome separation

    Get PDF
    Polo-like kinase-1 (PLK1) plays a major role in driving mitotic events, including centrosome disjunction and separation, and is frequently over-expressed in human cancers. PLK1 inhibition is a promising therapeutic strategy and works by arresting cells in mitosis due to monopolar spindles. The p53 tumour suppressor protein is a short-lived transcription factor that can inhibit the growth, or stimulate the death, of developing cancer cells. Curiously, although p53 normally acts in an anti-cancer capacity, it can offer significant protection against inhibitors of PLK1, but the events underpinning this effect are not known. Here, we show that functional p53 reduces the sensitivity to PLK1 inhibitors by permitting centrosome separation to occur, allowing cells to traverse mitosis and re-enter cycle with a normal complement of 2N chromosomes. Protection entails the activation of p53 through the DNA damage-response enzymes, ATM and ATR, and requires the phosphorylation of p53 at the key regulatory site, Ser15. These data highlight a previously unrecognised link between p53, PLK1 and centrosome separation that has therapeutic implications for the use of PLK1 inhibitors in the clinic

    Gravitational Waves From Known Pulsars: Results From The Initial Detector Era

    Get PDF
    We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom

    ARF-BP1 as a potential therapeutic target

    Get PDF
    In this review, we discuss the recent identification of ARF-BP1 (also known as Mule, UREB1, E3histone, LASU1, and HectH9). ARF-BP1, a HECT domain-containing E3 ubiquitin ligase, interacts with ARF and p53. Its ubiquitin ligase activity is inhibited by ARF. Inactivation of ARF-BP1 stabilised p53 and induced apoptosis. Notably, inactivation of ARF-BP1 also caused cell growth repression in p53-null cells and breast cancer cells with mutant p53. Thus, ARF-BP1 emerges as a novel therapeutic target against cancer regardless of p53 status
    corecore