7,836 research outputs found
A geometric basis for the standard-model gauge group
A geometric approach to the standard model in terms of the Clifford algebra
Cl_7 is advanced. A key feature of the model is its use of an algebraic spinor
for one generation of leptons and quarks. Spinor transformations separate into
left-sided ("exterior") and right-sided ("interior") types. By definition,
Poincare transformations are exterior ones. We consider all rotations in the
seven-dimensional space that (1) conserve the spacetime components of the
particle and antiparticle currents and (2) do not couple the right-chiral
neutrino. These rotations comprise additional exterior transformations that
commute with the Poincare group and form the group SU(2)_L, interior ones that
constitute SU(3)_C, and a unique group of coupled double-sided rotations with
U(1)_Y symmetry. The spinor mediates a physical coupling of Poincare and
isotopic symmetries within the restrictions of the Coleman--Mandula theorem.
The four extra spacelike dimensions in the model form a basis for the Higgs
isodoublet field, whose symmetry requires the chirality of SU(2). The charge
assignments of both the fundamental fermions and the Higgs boson are produced
exactly.Comment: 17 pages, LaTeX requires iopart. Accepted for publication in J. Phys.
A: Math. Gen. 9 Mar 2001. Typos correcte
Use of derived forcing functions at Centaur main engine cutoff in predicting transient loads on Mariner Mars 1971 and Viking spacecraft
Mathematical models for prediction of acceleration responses and reaction forces and moments at base of Mariner Mars 71 and Viking spacecraft from Centaur main engine cutof
Genetic Suppression of Basement Membrane Defects in Caenorhabditis elegans by Gain of Function in Extracellular Matrix and Cell-Matrix Attachment Genes.
Basement membranes are extracellular matrices essential for embryonic development in animals. Peroxidasins are extracellular peroxidases implicated in the unique sulfilimine cross-links between type IV basement membrane collagens. Loss of function in the Caenorhabditis elegans peroxidasin PXN-2 results in fully penetrant embryonic or larval lethality. Using genetic suppressor screening, we find that the requirement for PXN-2 in development can be bypassed by gain of function in multiple genes encoding other basement membrane components, or proteins implicated in cell-matrix attachment. We identify multiple alleles of let-805, encoding the transmembrane protein myotactin, which suppress phenotypes of pxn-2 null mutants and of other basement membrane mutants such as F-spondin/spon-1 These let-805 suppressor alleles cause missense alterations in two pairs of FNIII repeats in the extracellular domain; they act dominantly and have no detectable phenotypes alone, suggesting they cause gain of function. We also identify suppressor missense mutations affecting basement membrane components type IV collagen (emb-9, let-2) and perlecan (unc-52), as well as a mutation affecting spectraplakin (vab-10), a component of the epidermal cytoskeleton. These suppressor alleles do not bypass the developmental requirement for core structural proteins of the basement membrane such as laminin or type IV collagen. In conclusion, putative gain-of-function alterations in matrix proteins or in cell-matrix receptors can overcome the requirement for certain basement membrane proteins in embryonic development, revealing previously unknown plasticity in the genetic requirements for the extracellular matrix
Use of electronic medical records and biomarkers to manage risk and resource efficiencies
Peer reviewedPublisher PD
Engineering the Next Generation of Solid State Proton Conductors: Synthesis and Properties of Ba_(3−x)K_(x)H_(x)(PO_4)_2
A new series of compounds with general chemical formula Ba_(3−x)K_(x)H_(x)(PO_4)_2 has been successfully prepared. This particular stoichiometry was targeted as a candidate solid-state proton conductor because of its anticipated structural similarity to known M_(3)H(XO_4)_2 superprotonic conductors (M = Cs, Rb, NH4, K; X = Se, S) and to the known trigonal compound Ba_(3)(PO_4)_2. The materials were synthesized from aqueous solution using barium acetate, dipotassium hydrogen phosphate, and potassium hydroxide as starting materials. Through variations in the initial solution stoichiometry or the synthesis temperature, the final stoichiometry could be controlled from x ~ 0.5 to ~1. X-ray powder diffraction, energy dispersive spectroscopy chemical analysis, ^(1)H magic angle spinning (MAS) nuclear magnetic spectroscopy, and thermogravimetric analysis were all employed to establish potassium and proton incorporation. The diffraction data confirmed crystallization of a trigonal phase, and chemical analysis showed the (Ba+K):P ratio to be 3:2, consistent with the target stoichiometry. The conductivity of the Ba_(3−x)K_(x)H_(x)(PO_4)_2 materials, as measured by A.C. impedance spectroscopy, is about 3 orders of magnitude greater than the end-member Ba_(3)(PO_4)_2 material with only a slight dependence on x, however, it is substantially lower than that of typical superprotonic conductors and of the M_(3)H(XO_4)_2 materials in particular. The close proximity of Ba to the hydrogen bond site is proposed to explain this behavior. At 250 °C, the conductivity is 2.4 × 10^(−5) S/cm for the composition x = 0.80, which, when combined with the water insolubility and the relatively high thermal stability, may render Ba_(3−x)K_(x)H_(x)(PO_4)_2 an attractive alternative in selected electrochemical applications to known superprotonic conductors
Suppressed dependence of polarization on epitaxial strain in highly polar ferroelectrics
A combined experimental and computational investigation of coupling between
polarization and epitaxial strain in highly polar ferroelectric
PbZr_0.2Ti_0.8O_3 (PZT) thin films is reported. A comparison of the properties
of relaxed (tetragonality c/a = 1.05) and highly-strained (c/a = 1.09)
epitaxial films shows that polarization, while being amongst the highest
reported for PZT or PbTiO_3 in either film or bulk forms (P_r = 82
microC/cm^2), is almost independent of the epitaxial strain. We attribute this
behavior to a suppressed sensitivity of the A-site cations to epitaxial strain
in these Pb-based perovskites, where the ferroelectric displacements are
already large, contrary to the case of less polar perovskites, such as BaTiO_3.
In the latter case, the A-site cation (Ba) and equatorial oxygen displacements
can lead to substantial polarization increases.Comment: 4 pages, 3 figure
Heterotroph Interactions Alter Prochlorococcus Transcriptome Dynamics during Extended Periods of Darkness
Microbes evolve within complex ecological communities where biotic interactions impact both individual cells and the environment as a whole. Here we examine how cellular regulation in the marine cyanobacterium Prochlorococcus is influenced by a heterotrophic bacterium, Alteromonas macleodii, under different light conditions. We monitored the transcriptome of Prochlorococcus, grown either alone or in coculture, across a diel light:dark cycle and under the stress of extended darkness-a condition that cells would experience when mixed below the ocean's euphotic zone. More Prochlorococcus transcripts exhibited 24-h periodic oscillations in coculture than in pure culture, both over the normal diel cycle and after the shift to extended darkness. This demonstrates that biotic interactions, and not just light, can affect timing mechanisms in Prochlorococcus, which lacks a self-sustaining circadian oscillator. The transcriptomes of replicate pure cultures of Prochlorococcus lost their synchrony within 5 h of extended darkness and reflected changes in stress responses and metabolic functions consistent with growth cessation. In contrast, when grown with Alteromonas, replicate Prochlorococcus transcriptomes tracked each other for at least 13 h in the dark and showed signs of continued biosynthetic and metabolic activity. The transcriptome patterns suggest that the heterotroph may be providing energy or essential biosynthetic substrates to Prochlorococcus in the form of organic compounds, sustaining this autotroph when it is deprived of solar energy. Our findings reveal conditions where mixotrophic metabolism may benefit marine cyanobacteria and highlight new impacts of community interactions on basic Prochlorococcus cellular processes. IMPORTANCE: Prochlorococcus is the most abundant photosynthetic organism on the planet. These cells play a central role in the physiology of surrounding heterotrophs by supplying them with fixed organic carbon. It is becoming increasingly clear, however, that interactions with heterotrophs can affect autotrophs as well. Here we show that such interactions have a marked impact on the response of Prochlorococcus to the stress of extended periods of darkness, as reflected in transcriptional dynamics. These data suggest that diel transcriptional rhythms within Prochlorococcus, which are generally considered to be strictly under the control of light quantity, quality, and timing, can also be influenced by biotic interactions. Together, these findings provide new insights into the importance of microbial interactions on Prochlorococcus physiology and reveal conditions where heterotroph-derived compounds may support autotrophs-contrary to the canonical autotroph-to-heterotroph trophic paradigm.National Science Foundation (U.S.) (OCE-1356460)National Science Foundation (U.S.) (DBI-0424599)Center for Microbial Oceanography: Research and EducationGordon and Betty Moore Foundation (Grant GBMF495)Simons Foundation (SCOPE Award 329108)Simons Foundation (LIFE 337262
On the Change in Archivability of Websites Over Time
As web technologies evolve, web archivists work to keep up so that our
digital history is preserved. Recent advances in web technologies have
introduced client-side executed scripts that load data without a referential
identifier or that require user interaction (e.g., content loading when the
page has scrolled). These advances have made automating methods for capturing
web pages more difficult. Because of the evolving schemes of publishing web
pages along with the progressive capability of web preservation tools, the
archivability of pages on the web has varied over time. In this paper we show
that the archivability of a web page can be deduced from the type of page being
archived, which aligns with that page's accessibility in respect to dynamic
content. We show concrete examples of when these technologies were introduced
by referencing mementos of pages that have persisted through a long evolution
of available technologies. Identifying these reasons for the inability of these
web pages to be archived in the past in respect to accessibility serves as a
guide for ensuring that content that has longevity is published using good
practice methods that make it available for preservation.Comment: 12 pages, 8 figures, Theory and Practice of Digital Libraries (TPDL)
2013, Valletta, Malt
Stellar-Mass Black Holes in the Solar Neighborhood
We search for nearby, isolated, accreting, ``stellar-mass'' (3 to
) black holes. Models suggest a synchrotron spectrum in visible
wavelengths and some emission in X-ray wavelengths. Of 3.7 million objects in
the Sloan Digital Sky Survey Early Data Release, about 150,000 objects have
colors and properties consistent with such a spectrum, and 87 of these objects
are X-ray sources from the ROSAT All Sky Survey. Thirty-two of these have been
confirmed not to be black-holes using optical spectra. We give the positions
and colors of these 55 black-hole candidates, and quantitatively rank them on
their likelihood to be black holes. We discuss uncertainties the expected
number of sources, and the contribution of blackholes to local dark matter.Comment: Replaced with version accepted by ApJ. 40 pages, 8 figure
- …
