128 research outputs found

    Dynamical mass generation by source inversion: Calculating the mass gap of the Gross-Neveu model

    Get PDF
    We probe the U(N) Gross-Neveu model with a source-term JΨˉΨJ\bar{\Psi}\Psi. We find an expression for the renormalization scheme and scale invariant source J^\hat{J}, as a function of the generated mass gap. The expansion of this function is organized in such a way that all scheme and scale dependence is reduced to one single parameter d. We get a non-perturbative mass gap as the solution of J^=0\hat{J}=0. In one loop we find that any physical choice for d gives good results for high values of N. In two loops we can determine d self-consistently by the principle of minimal sensitivity and find remarkably accurate results for N>2.Comment: 13 pages, 3 figures, added referenc

    The mass gap and vacuum energy of the Gross-Neveu model via the 2PPI expansion

    Get PDF
    We introduce the 2PPI (2-point-particle-irreducible) expansion, which sums bubble graphs to all orders. We prove the renormalizibility of this summation. We use it on the Gross-Neveu model to calculate the mass gap and vacuum energy. After an optimization of the expansion, the final results are qualitatively good.Comment: 14 pages,19 eps figures, revtex

    Phase diagram of Regge quantum gravity coupled to SU(2) gauge theory

    Get PDF
    We analyze Regge quantum gravity coupled to SU(2) gauge theory on 43×24^3\times 2, 63×46^{3}\times 4 and 83×48^{3}\times 4 simplicial lattices. It turns out that the window of the well-defined phase of the gravity sector where geometrical expectation values are stable extends to negative gravitational couplings as well as to gauge couplings across the deconfinement phase transition. We study the string tension from Polyakov loops, compare with the β\beta-function of pure gauge theory and conclude that a physical limit through scaling is possible.Comment: RevTeX, 14 pages, 5 figures (2 eps, 3 tex), 2 table

    Theoretical uncertainties for measurements of alpha_s from electroweak observables

    Full text link
    One of the most precise measurements of the strong coupling constant alpha_s(MZ) is obtained in the context of global analyses of precision electroweak data. This article reviews the sensitivity of different electroweak observables to alpha_s and describes the perturbative uncertainties related to missing higher orders. The complete renormalisation scale dependence for the relevant observables is calculated at next-to-next-to-leading order and a new method is presented to determine the corresponding perturbative uncertainty for measurements of alpha_s based on these observables.Comment: v4: Revised version with new tables and figure

    Commensurate Scale Relations in Quantum Chromodynamics

    Full text link
    We use the BLM method to show that perturbatively-calculable observables in QCD can be related to each other without renormalization scale or scheme ambiguity. We define and study the commensurate scale relations. We show that the commensurate scales satisfy the renormalization group transitivity rule which ensures that predictions in PQCD are independent of the choice of an intermediate renormalization scheme. We generalize the BLM procedure to higher order. The application of this procedure to relate known physical observables in QCD gives surprisingly simple results. In particular, the annihilation ratio Re+eR_{e^+e^-} and the Bjorken sum rule for polarized electroproduction are related through simple coefficients, which reinforces the idea of a hidden symmetry between these two observables.Comment: 35 pages (RevTeX), one PostScript figure included at the end. SLAC-PUB-6481, UMD Preprint #94-13

    The (LATTICE) QCD Potential and Running Coupling: How to Accurately Interpolate between Multi-Loop QCD and the String Picture

    Full text link
    We present a simple parameterization of a running coupling constant, defined via the static potential, that interpolates between 2-loop QCD in the UV and the string prediction in the IR. Besides the usual \Lam-parameter and the string tension, the coupling depends on one dimensionless parameter, determining how fast the crossover from UV to IR behavior occurs (in principle we know how to take into account any number of loops by adding more parameters). Using a new Ansatz for the LATTICE potential in terms of the continuum coupling, we can fit quenched and unquenched Monte Carlo results for the potential down to ONE lattice spacing, and at the same time extract the running coupling to high precision. We compare our Ansatz with 1-loop results for the lattice potential, and use the coupling from our fits to quantitatively check the accuracy of 2-loop evolution, compare with the Lepage-Mackenzie estimate of the coupling extracted from the plaquette, and determine Sommer's scale r0r_0 much more accurately than previously possible. For pure SU(3) we find that the coupling scales on the percent level for β6\beta\geq 6.Comment: 47 pages, incl. 4 figures in LaTeX [Added remarks on correlated vs. uncorrelated fits in sect. 4; corrected misprints; updated references.

    One-loop N-point equivalence among negative-dimensional, Mellin-Barnes and Feynman parametrization approaches to Feynman integrals

    Full text link
    We show that at one-loop order, negative-dimensional, Mellin-Barnes' (MB) and Feynman parametrization (FP) approaches to Feynman loop integrals calculations are equivalent. Starting with a generating functional, for two and then for NN-point scalar integrals we show how to reobtain MB results, using negative-dimensional and FP techniques. The NN-point result is valid for different masses, arbitrary exponents of propagators and dimension.Comment: 11 pages, LaTeX. To be published in J.Phys.

    Running coupling and fermion mass in strong coupling QED

    Full text link
    Simple toy model is used in order to exhibit the technique of extracting the non-perturbative information about Green's functions in Minkowski space. The effective charge and the dynamical electron mass are calculated in strong coupling 3+1 QED by solving the coupled Dyson-Schwinger equations for electron and photon propagators. The minimal Ball-Chiu vertex was used for simplicity and we impose the Landau gauge fixing on QED action. The solution obtained separately in Euclidean and Minkowski space were compared, the latter one was extracted with the help of spectral technique.Comment: 23 pages, 4 figures, v4: revised and extended version, one introductory section adde

    Quark-gluon vertex in general kinematics

    Get PDF
    The original publication can be found at www.springerlink.com Submitted to Cornell University’s online archive www.arXiv.org in 2007 by Jon-Ivar Skullerud. Post-print sourced from www.arxiv.org.We compute the quark–gluon vertex in quenched lattice QCD in the Landau gauge, using an off-shell mean-field O(a)-improved fermion action. The Dirac-vector part of the vertex is computed for arbitrary kinematics. We find a substantial infrared enhancement of the interaction strength regardless of the kinematics.Ayse Kizilersu, Derek B. Leinweber, Jon-Ivar Skullerud and Anthony G. William

    Implicit Regularization and Renormalization of QCD

    Full text link
    We apply the Implicit Regularization Technique (IR) in a non-abelian gauge theory. We show that IR preserves gauge symmetry as encoded in relations between the renormalizations constants required by the Slavnov-Taylor identities at the one loop level of QCD. Moreover, we show that the technique handles divergencies in massive and massless QFT on equal footing.Comment: (11 pages, 2 figures
    corecore