11,798 research outputs found
NICMOS Photometry of the Unusual Dwarf Planet Haumea and its Satellites
We present here Hubble Space Telescope NICMOS F110W and F160W observations of Haumea, and its two satellites Hi'iaka and Namaka. From the measured (F110W-F160W) colors of ā1.208 Ā± 0.004, ā1.48 Ā± 0.06, and ā1.4 Ā± 0.2 mag for each object, respectively, we infer that the 1.6 Ī¼m water-ice absorption feature depths on Hi'iaka and Namaka are at least as deep as that of Haumea. The light curve of Haumea is detected in both filters, and we find that the infrared color is bluer by ~2%-3% at the phase of the red spot. These observations suggest that the satellites of Haumea were formed from the collision that produced the Haumea collisional family
The Hubble Wide Field Camera 3 Test of Surfaces in the Outer Solar System: The Compositional Classes of the Kuiper Belt
We present the first results of the Hubble Wide Field Camera 3 Test of
Surfaces in the Outer Solar System (H/WTSOSS). The purpose of this survey was
to measure the surface properties of a large number of Kuiper belt objects and
attempt to infer compositional and dynamical correlations. We find that the
Centaurs and the low-perihelion scattered disk and resonant objects exhibit
virtually identical bifurcated optical colour distributions and make up two
well defined groups of object. Both groups have highly correlated optical and
NIR colours which are well described by a pair of two component mixture models
that have different red components, but share a common neutral component. The
small, high-perihelion excited objects are entirely
consistent with being drawn from the two branches of the mixing model
suggesting that the colour bifurcation of the Centaurs is apparent in all small
excited objects. On the other hand, objects larger than are
not consistent with the mixing model, suggesting some evolutionary process
avoided by the smaller objects. The existence of a bifurcation amongst all
excited populations argues that the two separate classes of object existed in
the primordial disk before the excited Kuiper belt was populated. The cold
classical objects exhibit a different type of surface which has colours that
are consistent with being drawn from the red branch of the mixing model, but
with much higher albedos.Comment: Accepted to the Astrophysical Journal. 49 Pages, 15 Figure
Water ice in the Kuiper belt
We examine a large collection of low-resolution near-infrared spectra of Kuiper Belt objects (KBOs) and centaurs in an attempt to understand the presence of water ice in the Kuiper Belt. We find that water ice on the surface of these objects occurs in three separate manners: (1) Haumea family members uniquely show surfaces of nearly pure water ice, presumably a consequence of the fragmentation of the icy mantle of a larger differentiated proto-Haumea; (2) large objects with absolute magnitudes of H < 3 (and a limited number to H = 4.5) have surface coverings of water iceāperhaps mixed with ammoniaāthat appears to be related to possibly ancient cryovolcanism on these large objects; and (3) smaller KBOs and centaurs which are neither Haumea family members nor cold-classical KBOs appear to divide into two families (which we refer to as "neutral" and "red"), each of which is a mixture of a common nearly neutral component and either a slightly red or very red component that also includes water ice. A model suggesting that the difference between neutral and red objects due to formation in an early compact solar system either inside or outside, respectively, of the ~20 AU methanol evaporation line is supported by the observation that methanol is only detected on the reddest objects, which are those which would be expected to have the most of the methanol containing mixture
The Mass, Orbit, and Tidal Evolution of the Quaoar-Weywot System
Here we present new adaptive optics observations of the Quaoar-Weywot system.
With these new observations we determine an improved system orbit. Due to a
0.39 day alias that exists in available observations, four possible orbital
solutions are available with periods of , , , and
days. From the possible orbital solutions, system masses of
kg are found. These observations provide an
updated density for Quaoar of 2.7-5.0{g cm^{-3}}. In all cases, Weywot's
orbit is eccentric, with possible values . We present a
reanalysis of the tidal orbital evolution of the Quoaor-Weywot system. We have
found that Weywot has probably evolved to a state of synchronous rotation, and
have likely preserved their initial inclinations over the age of the Solar
system. We find that for plausible values of the effective tidal dissipation
factor tides produce a very slow evolution of Weywot's eccentricity and
semi-major axis. Accordingly, it appears that Weywot's eccentricity likely did
not tidally evolve to its current value from an initially circular orbit.
Rather, it seems that some other mechanism has raised its eccentricity
post-formation, or Weywot formed with a non-negligible eccentricity.Comment: Accepted to Icarus, Nov. 8 201
The size, density, and formation of the Orcus-Vanth system in the Kuiper belt
The Kuiper belt object Orcus and its satellite Vanth form an unusual system
in the Kuiper belt. Orcus is amongst the largest objects known in the Kuiper
belt, but the relative size of Vanth is much larger than that of the tiny
satellites of the other large objects. From Hubble Space Telescope observations
we find that Orcus and Vanth have different visible colors and that Vanth does
not share the water ice absorption feature seen in the infrared spectrum of
Orcus. We also find that Vanth has a nearly face-on circular orbit with a
period of 9.5393 +-0.0001 days and semimajor axis of 8980+-20 km, implying a
system mass of 6.32+- 0.01 X 10^20 kg or 3.8% the mass of dwarf planet Eris.
From Spitzer Space Telescope observations we find that the thermal emission
is consistent with a single body with diameter 940+-70 km and a geometric
albedo of 0.28+-0.04. Assuming equal densities and albedos, this measurements
implies sizes of Orcus and Vanth of 900 and 280 km, respectively, and a mass
ratio of 33. Assuming a factor of 2 lower albedo for the non-icy Vanth,
however, implies sizes of 820 and 640 km and a mass ratio of 2. The measured
density depends on the assumed albedo ratio of the two objects but is
approximately 1.5+-0.3 g cm^-3$, midway between typical densities measured for
larger and for smaller objects. The orbit and mass ratio is consistent with
formation from a giant impact and subsequent outward tidal evolution and even
consistent with the system having now achieved a double synchronous state. The
system can equally well be explained, however, by initial eccentric capture,
Kozai cycling which increases the eccentricity and decreases the pericenter of
the orbit of Vanth, and subsequent tidal evolution inward.Comment: Submitted to A
Recommended from our members
Effects of Process Variables and Size Scale on Solidification Microstructure in Laser-Based Solid Freeform Fabrication of Ti-6Al-4V
Mechanical Engineerin
A new record of Percursaria percursa (Ulvaceae, Ulvales) on the North Island, New Zealand
The filamentous green alga Percursaria percursa (Ulvaceae, Ulvales) was recorded for the first time on the North Island of New Zealand at mokoroa Estuary, Tauranga Harbour. This species is previously known within New Zealand from only two records, both from the South Island. In Tauranga Harbour, this species was restricted to anoxic estuarine sediments where mangrove forests had been mulched, and mulchate left in situ. Percursaria percursa was found intertwined with Ulva spp. and Rhizoclonium spp. Surveys of other North and South Island estuaries suggest that this alga, although occurring as part of nuisance green algal blooms in Tauranga Harbour, has only colonized human-impacted locations, and has not yet been observed in natural' estuarine ecosystems in New Zealand. As this species was found intertwined with other mat-forming filamentous green algae, it can easily be misidentified in the field, leading to both over- and under-reporting of species occurrence
Southern hemispheric halon trends and global halon emissions, 1978ā2011
The atmospheric records of four halons, H-1211 (CBrClF2), H-1301 (CBrF3), H-2402 (CBrF2CBrF2) and H-1202 (CBr2F2), measured from air collected at Cape Grim, Tasmania, between 1978 and 2011, are reported. Mixing ratios of H-1211, H-2402 and H-1202 began to decline in the early to mid-2000s, but those of H-1301 continue to increase up to mid-2011. These trends are compared to those reported by NOAA (National Oceanic and Atmospheric Administration) and AGAGE (Advanced Global Atmospheric Experiment). The observations suggest that the contribution of the halons to total tropospheric bromine at Cape Grim has begun to decline from a peak in 2008 of about 8.1 ppt. An extrapolation of halon mixing ratios to 2060, based on reported banks and predicted release factors, shows this decline becoming more rapid in the coming decades, with a contribution to total tropospheric bromine of about 3 ppt in 2060. Top-down global annual emissions of the halons were derived using a two-dimensional atmospheric model. The emissions of all four have decreased since peaking in the late 1980sāmid-1990s, but this decline has slowed recently, particularly for H-1301 and H-2402 which have shown no decrease in emissions over the past five years. The UEA (University of East Anglia) top-down model-derived emissions are compared to those reported using a top-down approach by NOAA and AGAGE and the bottom-up estimates of HTOC (Halons Technical Options Committee). The implications of an alternative set of steady-state atmospheric lifetimes are discussed. Using a lifetime of 14 yr or less for H-1211 to calculate top-down emissions estimates would lead to small, or even negative, estimated banks given reported production data. Finally emissions of H-1202, a product of over-bromination during the production process of H-1211, have continued despite reported production of H-1211 ceasing in 2010. This raises questions as to the source of these H-1202 emissions
- ā¦