2,697 research outputs found
Production of the front-end boards of the LHCb muon system
This note describes the production of the front end boards CARDIAC, for the 1368 MWPC, and CARDIAC-GEM, for the 12 triple-GEM chambers, of the LHCb muon system. The PCB structure and component layout and the production issues, such as component soldering, quality assurance at the company and delivery rates, are described. The performance of these boards will be the subject of a future publication
Test with cosmic rays of the GEM chambers for the LHCb muon system produced in Cagliari
The inner region of the first LHCb muon station will be equipped with twelve Gas Electron Multiplier chambers. The seven chambers produced in Cagliari were studied for several days each using cosmic rays. We measured the efficiency, timing resolution, and uniformity, cluster-size and out-of-time multiplicity. We find all seven chambers perform well
Measurement of the time resolution of the installed muon chambers with the 2008 cosmic runs
One of the main goals of the LHCb muon system commissioning is to access the detector performance and identify possible misbehaviors in the installed chambers: this is partially possible using cosmic ray muons tracked through the detector. In this note we focus on the measurement of the time resolution of the whole installed detector (M2-M5 stations) using the 2008 commissioning data. Results are compared with the expected performances
A new method based on noise counting to monitor the frontend electronics of the LHCb muon detector
A new method has been developed to check the correct behaviour of the
frontend electronics of the LHCb muon detector. This method is based on the
measurement of the electronic noise rate at different thresholds of the
frontend discriminator. The method was used to choose the optimal discriminator
thresholds. A procedure based on this method was implemented in the detector
control system and allowed the detection of a small percentage of frontend
channels which had deteriorated. A Monte Carlo simulation has been performed to
check the validity of the method
Proposal to Search for Heavy Neutral Leptons at the SPS
A new fixed-target experiment at the CERN SPS accelerator is proposed that
will use decays of charm mesons to search for Heavy Neutral Leptons (HNLs),
which are right-handed partners of the Standard Model neutrinos. The existence
of such particles is strongly motivated by theory, as they can simultaneously
explain the baryon asymmetry of the Universe, account for the pattern of
neutrino masses and oscillations and provide a Dark Matter candidate.
Cosmological constraints on the properties of HNLs now indicate that the
majority of the interesting parameter space for such particles was beyond the
reach of the previous searches at the PS191, BEBC, CHARM, CCFR and NuTeV
experiments. For HNLs with mass below 2 GeV, the proposed experiment will
improve on the sensitivity of previous searches by four orders of magnitude and
will cover a major fraction of the parameter space favoured by theoretical
models.
The experiment requires a 400 GeV proton beam from the SPS with a total of
2x10^20 protons on target, achievable within five years of data taking. The
proposed detector will reconstruct exclusive HNL decays and measure the HNL
mass. The apparatus is based on existing technologies and consists of a target,
a hadron absorber, a muon shield, a decay volume and two magnetic
spectrometers, each of which has a 0.5 Tm magnet, a calorimeter and a muon
detector. The detector has a total length of about 100 m with a 5 m diameter.
The complete experimental set-up could be accommodated in CERN's North Area.
The discovery of a HNL would have a great impact on our understanding of
nature and open a new area for future research
Measurement of the front-end dead-time of the LHCb muon detector and evaluation of its contribution to the muon detection inefficiency
A method is described which allows to deduce the dead-time of the front-end
electronics of the LHCb muon detector from a series of measurements performed
at different luminosities at a bunch-crossing rate of 20 MHz. The measured
values of the dead-time range from 70 ns to 100 ns. These results allow to
estimate the performance of the muon detector at the future bunch-crossing rate
of 40 MHz and at higher luminosity
Performance of the LHCb muon system with cosmic rays
The LHCb Muon system performance is presented using cosmic ray events
collected in 2009. These events allowed to test and optimize the detector
configuration before the LHC start. The space and time alignment and the
measurement of chamber efficiency, time resolution and cluster size are
described in detail. The results are in agreement with the expected detector
performance.Comment: Submitted to JINST and accepte
Performance of the Muon Identification at LHCb
The performance of the muon identification in LHCb is extracted from data
using muons and hadrons produced in J/\psi->\mu\mu, \Lambda->p\pi and
D^{\star}->\pi D0(K\pi) decays. The muon identification procedure is based on
the pattern of hits in the muon chambers. A momentum dependent binary
requirement is used to reduce the probability of hadrons to be misidentified as
muons to the level of 1%, keeping the muon efficiency in the range of 95-98%.
As further refinement, a likelihood is built for the muon and non-muon
hypotheses. Adding a requirement on this likelihood that provides a total muon
efficiency at the level of 93%, the hadron misidentification rates are below
0.6%.Comment: 17 pages, 10 figure
A facility to Search for Hidden Particles (SHiP) at the CERN SPS
A new general purpose fixed target facility is proposed at the CERN SPS
accelerator which is aimed at exploring the domain of hidden particles and make
measurements with tau neutrinos. Hidden particles are predicted by a large
number of models beyond the Standard Model. The high intensity of the SPS
400~GeV beam allows probing a wide variety of models containing light
long-lived exotic particles with masses below (10)~GeV/c,
including very weakly interacting low-energy SUSY states. The experimental
programme of the proposed facility is capable of being extended in the future,
e.g. to include direct searches for Dark Matter and Lepton Flavour Violation.Comment: Technical Proposa
- …
