236 research outputs found
High-Resolution, In Vivo Magnetic Resonance Imaging of Drosophila at 18.8 Tesla
High resolution MRI of live Drosophila was performed at 18.8 Tesla, with a field of view less than 5 mm, and administration of manganese or gadolinium-based contrast agents. This study demonstrates the feasibility of MR methods for imaging the fruit fly Drosophila with an NMR spectrometer, at a resolution relevant for undertaking future studies of the Drosophila brain and other organs. The fruit fly has long been a principal model organism for elucidating biology and disease, but without capabilities like those of MRI. This feasibility marks progress toward the development of new in vivo research approaches in Drosophila without the requirement for light transparency or destructive assays
Exploring psychological need satisfaction from gambling participation and the moderating influence of game preferences
Psychological needs are satisfied through leisure participation, which in turn influences subjective well-being. The present study explored the psychological needs reported to be satisfied through gambling participation and examined associations between need satisfaction, game preferences and subjective well-being. A heterogeneous, self-selected sample of 1446 participants was recruited, through the Internet gambling provider Kindred Group Plc, for an online questionnaire survey. Five psychological need dimensions of gambling were identified, using exploratory and confirmatory factor analyses on calibration and validation samples, respectively: mastery, detachment, self-affirmation, risk and excitement, and affiliation. Challenge and mastery need satisfaction was higher for poker than for sports betting, horse racing, slots or casino table games; both self-affirmation and affiliation were also higher for poker than for sports betting and slots. By comparison, detachment was higher for slots than for sports gambling. While there were no significant variations in stress levels between the different forms of gambling, happiness ratings were lower for slots compared with sports betting and poker. This study provides insight into how distinctive patterns of play may satisfy different psychological needs and provides preliminary insights into how gambling patterns may prove adaptive or maladaptive as leisure choices
Description of an aerodynamic levitation apparatus with applications in Earth sciences
<p>Abstract</p> <p>Background</p> <p>In aerodynamic levitation, solids and liquids are floated in a vertical gas stream. In combination with CO<sub>2</sub>-laser heating, containerless melting at high temperature of oxides and silicates is possible. We apply aerodynamic levitation to bulk rocks in preparation for microchemical analyses, and for evaporation and reduction experiments.</p> <p>Results</p> <p>Liquid silicate droplets (~2 mm) were maintained stable in levitation using a nozzle with a 0.8 mm bore and an opening angle of 60°. The gas flow was ~250 ml min<sup>-1</sup>. Rock powders were melted and homogenized for microchemcial analyses. Laser melting produced chemically homogeneous glass spheres. Only highly (e.g. H<sub>2</sub>O) and moderately volatile components (Na, K) were partially lost. The composition of evaporated materials was determined by directly combining levitation and inductively coupled plasma mass spectrometry. It is shown that the evaporated material is composed of Na > K >> Si. Levitation of metal oxide-rich material in a mixture of H<sub>2 </sub>and Ar resulted in the exsolution of liquid metal.</p> <p>Conclusions</p> <p>Levitation melting is a rapid technique or for the preparation of bulk rock powders for major, minor and trace element analysis. With exception of moderately volatile elements Na and K, bulk rock analyses can be performed with an uncertainty of ± 5% relative. The technique has great potential for the quantitative determination of evaporated materials from silicate melts. Reduction of oxides to metal is a means for the extraction and analysis of siderophile elements from silicates and can be used to better understand the origin of chondritic metal.</p
Association of HLA-B*5801 allele and allopurinol-induced stevens johnson syndrome and toxic epidermal necrolysis: a systematic review and meta-analysis
Background: Despite some studies suggesting a possible association between human leukocyte antigen, HLA-B*5801 and allopurinol induced Stevens-Johnson Syndrome (SJS) and Toxic Epidermal Necrolysis (TEN), the evidence of association and its magnitude remain inconclusive. This study aims to systematically review and meta-analyze the association between HLA-B*5801 allele and allopurinol-induced SJS/TEN.Methods: A comprehensive search was performed in databases including MEDLINE, Pre-MEDLINE, Cochrane Library, EMBASE, International Pharmaceutical Abstracts (IPA), CINAHL, PsychInfo, the WHO International, Clinical Trial Registry, and ClinicalTrial.gov from their inceptions to June 2011. Only studies investigating association between HLA-B*5801 with allopurinol-induced SJS/TEN were included. All studies were extracted by two independent authors. The primary analysis was the carrier frequency of HLA-B*5801 comparison between allopurinol-induced SJS/TEN cases and each comparative group. The pooled odds ratios were calculated using a random effect model.Results: A total of 4 studies with 55 SJS/TEN cases and 678 matched-controls (allopurinol-tolerant control) was identified, while 5 studies with 69 SJS/TEN cases and 3378 population-controls (general population) were found. SJS/TEN cases were found to be significantly associated with HLA-B*5801 allele in both groups of studies with matched-control (OR 96.60, 95%CI 24.49-381.00, p < 0.001) and population-control (OR 79.28, 95%CI 41.51-151.35, p < 0.001). Subgroup analysis for Asian and Non-Asian population yielded similar findings.Conclusion: We found a strong and significant association between HLA-B*5801 and allopurinol-induced SJS/TEN. Therefore, HLA-B*5801 allele screening may be considered in patients who will be treated with allopurinol
Line-Scanning Particle Image Velocimetry: An Optical Approach for Quantifying a Wide Range of Blood Flow Speeds in Live Animals
The ability to measure blood velocities is critical for studying vascular development, physiology, and pathology. A key challenge is to quantify a wide range of blood velocities in vessels deep within living specimens with concurrent diffraction-limited resolution imaging of vascular cells. Two-photon laser scanning microscopy (TPLSM) has shown tremendous promise in analyzing blood velocities hundreds of micrometers deep in animals with cellular resolution. However, current analysis of TPLSM-based data is limited to the lower range of blood velocities and is not adequate to study faster velocities in many normal or disease conditions.We developed line-scanning particle image velocimetry (LS-PIV), which used TPLSM data to quantify peak blood velocities up to 84 mm/s in live mice harboring brain arteriovenous malformation, a disease characterized by high flow. With this method, we were able to accurately detect the elevated blood velocities and exaggerated pulsatility along the abnormal vascular network in these animals. LS-PIV robustly analyzed noisy data from vessels as deep as 850 µm below the brain surface. In addition to analyzing in vivo data, we validated the accuracy of LS-PIV up to 800 mm/s using simulations with known velocity and noise parameters.To our knowledge, these blood velocity measurements are the fastest recorded with TPLSM. Partnered with transgenic mice carrying cell-specific fluorescent reporters, LS-PIV will also enable the direct in vivo correlation of cellular, biochemical, and hemodynamic parameters in high flow vascular development and diseases such as atherogenesis, arteriogenesis, and vascular anomalies
Stochastic Modeling of B Lymphocyte Terminal Differentiation and Its Suppression by Dioxin
<p>Abstract</p> <p>Background</p> <p>Upon antigen encounter, naïve B lymphocytes differentiate into antibody-secreting plasma cells. This humoral immune response is suppressed by the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other dioxin-like compounds, which belong to the family of aryl hydrocarbon receptor (AhR) agonists.</p> <p>Results</p> <p>To achieve a better understanding of the immunotoxicity of AhR agonists and their associated health risks, we have used computer simulations to study the behavior of the gene regulatory network underlying B cell terminal differentiation. The core of this network consists of two coupled double-negative feedback loops involving transcriptional repressors Bcl-6, Blimp-1, and Pax5. Bifurcation analysis indicates that the feedback network can constitute a bistable system with two mutually exclusive transcriptional profiles corresponding to naïve B cells and plasma cells. Although individual B cells switch to the plasma cell state in an all-or-none fashion when stimulated by the polyclonal activator lipopolysaccharide (LPS), stochastic fluctuations in gene expression make the switching event probabilistic, leading to heterogeneous differentiation response among individual B cells. Moreover, stochastic gene expression renders the dose-response behavior of a population of B cells substantially graded, a result that is consistent with experimental observations. The steepness of the dose response curve for the number of plasma cells formed vs. LPS dose, as evaluated by the apparent Hill coefficient, is found to be inversely correlated to the noise level in Blimp-1 gene expression. Simulations illustrate how, through AhR-mediated repression of the AP-1 protein, TCDD reduces the probability of LPS-stimulated B cell differentiation. Interestingly, stochastic simulations predict that TCDD may destabilize the plasma cell state, possibly leading to a reversal to the B cell phenotype.</p> <p>Conclusion</p> <p>Our results suggest that stochasticity in gene expression, which renders a graded response at the cell population level, may have been exploited by the immune system to launch humoral immune response of a magnitude appropriately tuned to the antigen dose. In addition to suppressing the initiation of the humoral immune response, dioxin-like compounds may also disrupt the maintenance of the acquired immunity.</p
Persistent Place-Making in Prehistory: the Creation, Maintenance, and Transformation of an Epipalaeolithic Landscape
Most archaeological projects today integrate, at least to some degree, how past people engaged with their surroundings, including both how they strategized resource use, organized technological production, or scheduled movements within a physical environment, as well as how they constructed cosmologies around or created symbolic connections to places in the landscape. However, there are a multitude of ways in which archaeologists approach the creation, maintenance, and transformation of human-landscape interrelationships. This paper explores some of these approaches for reconstructing the Epipalaeolithic (ca. 23,000–11,500 years BP) landscape of Southwest Asia, using macro- and microscale geoarchaeological approaches to examine how everyday practices leave traces of human-landscape interactions in northern and eastern Jordan. The case studies presented here demonstrate that these Epipalaeolithic groups engaged in complex and far-reaching social landscapes. Examination of the Early and Middle Epipalaeolithic (EP) highlights that the notion of “Neolithization” is somewhat misleading as many of the features we use to define this transition were already well-established patterns of behavior by the Neolithic. Instead, these features and practices were enacted within a hunter-gatherer world and worldview
- …