407 research outputs found

    On the predictability of ice avalanches

    Get PDF
    The velocity of unstable large ice masses from hanging glaciers increases as a power-law function of time prior to failure. This characteristic acceleration presents a finite-time singularity at the theoretical time of failure and can be used to forecast the time of glacier collapse. However, the non-linearity of the power-law function makes the prediction difficult. The effects of the non-linearity on the predictability of a failure are analyzed using a non-linear regression method. Predictability strongly depends on the time window when the measurements are performed. Log-periodic oscillations have been observed to be superimposed on the motion of large unstable ice masses. The value of their amplitude, frequency and phase are observed to be spatially homogeneous over the whole unstable ice mass. Inclusion of a respective term in the function describing the acceleration of unstable ice masses greatly increases the accuracy of the prediction

    Phosphorus status and cycling in native savanna and improved pastures on an acid low-P Colombian Oxisol

    Get PDF
    On acid low-phosphorus (P) Colombian Oxisols, improved pastures with acid-soil-tolerant grass and legume varieties have increased beef production by a factor of 10 to 15 with only modest P fertilizer inputs. This indicates that the efficiency of P fertilization could be greater than is commonly expected on such strongly P-sorbing soils. To understand the effect of improved pastures on P cycling and availability, we estimated P budgets, and characterized soil P by sequential fractionation, isotopic exchange and biological activity measurements on soil samples from unfertilized native savanna, and fertilized improved grass-only (Brachiaria decumbens cv. Basilisk) and grass-legume (B. decumbens + Pueraria phaseoloides, Kudzu) pastures established in 1978 on a medium-textured isohyperthermic, tropeptic haplustox. Comparison of calculated P budgets, based on inputs and exports, with total soil P contents showed that fertilization, as part of the improved pasture management, had resulted in a measurable increase of total P in the surface 0-20 cm soil layer of nearly 30 mg kg-1 or about 20% over the savanna level. Sequential soil P fractionation of different seasonal samplings indicated that grass-legume maintained higher organic and available inorganic P levels with less temporal variation than the two other types. The linkage of organic P and available P was also reflected in soil biological activity. Estimates of P in microbial biomass and phosphatase activity were significantly higher in grass-legume than grass-only and savanna. The improvement in soil P availability, as measured by solution P concentration, P sorption and exchangeable P, was much greater in grass-legume than in grass-only. With comparable fertilizer inputs and greater product exports, improved P availability in grass-legume cannot be due to differences in budgets but can be attributed to changes in the overall biological activity in the soil-plant system caused by the presence of legumes in the vegetation cover. Total C, organic P content and macrofaunal activity were all significantly higher in grass-legume soils. Greater turnover of organic litter in grass-legume may provide for steadier organic P inputs and, therefore, higher P cycling and availabilit

    Response of selected plant and insect species to simulated solid rocket exhaust mixtures and to exhaust components from solid rocket fuels

    Get PDF
    The effects of solid rocket fuel (SRF) exhaust on selected plant and and insect species in the Merritt Island, Florida area was investigated in order to determine if the exhaust clouds generated by shuttle launches would adversely affect the native, plants of the Merritt Island Wildlife Refuge, the citrus production, or the beekeeping industry of the island. Conditions were simulated in greenhouse exposure chambers and field chambers constructed to model the ideal continuous stirred tank reactor. A plant exposure system was developed for dispensing and monitoring the two major chemicals in SRF exhaust, HCl and Al203, and for dispensing and monitoring SRF exhaust (controlled fuel burns). Plants native to Merritt Island, Florida were grown and used as test species. Dose-response relationships were determined for short term exposure of selected plant species to HCl, Al203, and mixtures of the two to SRF exhaust

    Searching for targets for the systemic therapy of mesothelioma

    Get PDF
    Increasing knowledge about the molecular characteristics of mesothelioma had led to the identification of novel potential targets for systemic therapy. This review elaborates on the rationale behind targeted approaches that have been and are undergoing exploration in mesothelioma and summarizes available clinical results and ongoing efforts to improve the systemic therapy of mesotheliom

    Enhancement of the Deuteron-Fusion Reactions in Metals and its Experimental Implications

    Full text link
    Recent measurements of the reaction d(d,p)t in metallic environments at very low energies performed by different experimental groups point to an enhanced electron screening effect. However, the resulting screening energies differ strongly for divers host metals and different experiments. Here, we present new experimental results and investigations of interfering processes in the irradiated targets. These measurements inside metals set special challenges and pitfalls which make them and the data analysis particularly error-prone. There are multi-parameter collateral effects which are crucial for the correct interpretation of the observed experimental yields. They mainly originate from target surface contaminations due to residual gases in the vacuum as well as from inhomogeneities and instabilities in the deuteron density distribution in the targets. In order to address these problems an improved differential analysis method beyond the standard procedures has been implemented. Profound scrutiny of the other experiments demonstrates that the observed unusual changes in the reaction yields are mainly due to deuteron density dynamics simulating the alleged screening energy values. The experimental results are compared with different theoretical models of the electron screening in metals. The Debye-H\"{u}ckel model that has been previously proposed to explain the influence of the electron screening on both nuclear reactions and radioactive decays could be clearly excluded.Comment: 22 pages, 12 figures, REVTeX4, 2-column format. Submitted to Phys. Rev. C; accepte
    corecore