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Abstract. The velocity of unstable large ice masses from
hanging glaciers increases as a power-law function of time
prior to failure. This characteristic acceleration presents a
finite-time singularity at the theoretical time of failure and
can be used to forecast the time of glacier collapse. How-
ever, the non-linearity of the power-law function makes the
prediction difficult. The effects of the non-linearity on the
predictability of a failure are analyzed using a non-linear re-
gression method. Predictability strongly depends on the time
window when the measurements are performed.

Log-periodic oscillations have been observed to be super-
imposed on the motion of large unstable ice masses. The
value of their amplitude, frequency and phase are observed to
be spatially homogeneous over the whole unstable ice mass.
Inclusion of a respective term in the function describing the
acceleration of unstable ice masses greatly increases the ac-
curacy of the prediction.

1 Introduction

The prediction of ice avalanches from hanging glaciers is
based on the progressive acceleration observed on large un-
stable ice masses prior to their collapse. A suitable model of
the observed acceleration presents a finite time singularity;
that is, the velocity tends to infinity as the time approaches a
finite time. This finite time corresponds to the time of failure.

Finite time singularity models have been used for char-
acterizing a large variety of phenomena. Rheologists have
suggested such models to describe the ductile fracture of
samples of rock, soil, high-performance metal alloys, con-
crete, polymers and ice (seeVarnes, 1983 for a review
and Voitkovskii, 1960; Szyszkowski and Glockner1986;
Mahrenholtz and Wu1992 for laboratory ice). At large
scales, finite time singularity models have been proposed
to describe the mechanisms of landslides (e.g.Crosta and
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Agliardi, 2003; Amitrano et al., 2005), earthquakes1 (e.g.
Bufe and Varnes, 1993; Bowman et al., 1998), volcanic
eruptions (e.g.Voight, 1988), fracture of structures (e.g.Jo-
hansen and Sornette, 2000), inflation (Sornette et al., 2003),
finance, economy, population (Johansen and Sornette, 2001)
and break-off of ice chunks from hanging glaciers (Haeberli,
1975; Flotron, 1977; Iken, 1977; Röthlisberger, 1981; Lüthi,
2003; Pralong and Funk, 2005a,b).

Finite-time singularities are caused by positive feedback
processes, which lead to a catastrophic evolution of the ob-
served quantities.Sammis and Sornette(2002) reviewed pos-
itive feedbacks involved in the rupture of materials;Sornette
et al.(2003) mentioned a positive feedback involved in infla-
tion.

A suitable model for such catastrophic evolutions is given
by Voight’s differential equation (Voight, 1988)

f̈ = A
(
ḟ

)α
, (1)

where the dot denotes the time derivative andf (t;A, α,

c1, c2) is the function describing the temporal evolution of
a measured quantity. ObservationsYi are obtained at times
ti . They include a random disturbanceZi , i.e.

Yi = f (ti; A, α, c1, c2) + Zi . (2)

A and α>1 are the parameters describing the catastrophic
evolution ofY andc1, c2 are the two integration constants.

1This topic is controversial.Helmstetter et al.(2003) argued
that the progressive acceleration of representative seismic quanti-
ties is observed only by stacking many sequences of seismic activ-
ity and results from a different mechanism than critical phenomena.
Zöller and Hainzl(2002) claimed that the acceleration of seismicity
observed before large earthquakes may be spurious. They showed
that there is a 20% probability of observing the same acceleration
by chance in a synthetic catalog of random earthquakes. For these
reasons the presence of finite-time singularities in earthquakes (i.e.
the use of accelerating precursory seismicity to predict large earth-
quakes) is questionable.
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Fig. 1. Data set of Gruben glacier, Switzerland.(a) Photo of a
calving event similar to the one measured byHaeberli(1975). The
unstable mass is visible in the foreground.(b) Measured relative
velocity Ẏ (Haeberli, 1975) versus time (crosses) and its associ-
ated fit (solid line) based on Eq. (6). The estimated parametersθ̂i

of Eq. (6) are listed in Table1. The predicted failure time (corre-
sponding to abscissa zero) was 9 September 1974.(c) Residuals of
the fit. The solid line indicates the fit of the log-periodic oscillations
(see Sect.5).

Integrating Eq. (1) for α>1 and assuming thaṫf at the time
of the singularity is infinite, leads to (Voight, 1988)

f (t, θ) =

{
θ4 − θ3 ln(θ1 − t) if θ2 = 0
θ4 −

θ3
θ2

(θ1 − t)θ2 if θ2 6= 0
, (3)

with θ1 the time of failure,θ4 a constant and

θ2 =
α − 2

α − 1
< 1 and θ3 = (A (α − 1))θ2−1. (4)

For the failure of hanging glaciers, observations and numer-
ical simulations (Haeberli, 1975; Iken, 1977; Pralong and
Funk, 2005a) show that the relative motion of an unstable
ice mass (relative to the motion of the stable glacier part lo-
cated directly upstream of the unstable part) is adequately

described by Eq. (1); that is, the relative motion of the unsta-
ble ice masses can be modeled byf 2.

Two different approaches can be applied in order to pre-
dict the time of failureθ1: a “rheological” and an “empiri-
cal” approach. The rheological approach considers Eq. (1)
(or a similar equation) as a constitutive relation for the evo-
lution of Y and looks for general relations for the parameters
A=A(σ, T , ...) andα=α(σ, T , ...), which may depend, for
example, on the stressσ and the temperatureT . An a priori
knowledge ofA and α (or equivalently ofθ2 and θ3) per-
mits then to estimate the time of failureθ1. For example, by
settingA=B(T ) σ r , α=k+2 andẎ=1/(1−D), whereB(T )

is a function of temperature,r and k are material parame-
ters andD is the classical damage variable of the continuum
damage mechanics (e.g.Lemaitre, 1996), Voight’s equation
(Eq.1) reduces to

Ḋ = B(T ) σ r (1 − D)−k. (5)

This equation is the classical Kachanov-Rabotnov constitu-
tive relation (Kachanov, 1957; Rabotnov, 1969), modeling
the accumulation of isotropic damage in material subject to
uniaxial load. Equation (5) describes, therefore, a finite time
singularity if k>−1 (i.e. α>1). The rheological approach
is appropriate for describing the fracture of homogeneous
samples of ductile materials; however, a precise prediction
cannot be obtained. The application of this method to the
description of the failure of large-scale structures by the in-
tegration of a local damage evolution law (e.g. Eq.5) in a
large-scale domain can lead to an adequate capture of the
physics of the global fracture (e.g.Lyakhovsky et al.(2001)
for earthquakes, andPralong and Funk(2005a) for fracture
processes in glaciers), but fails to predict accurately the time
of the global failure, since the conditions prevailing before
the failure process are largely unknown and the parameters
are subject to uncertainties.

In the empirical approach, in contrast to the rheological
approach,A andα (or θ2 andθ3, respectively) are not a pri-
ori determined. The prediction of the failure timeθ1 is thus
a fitting problem of measured data, where the critical quan-
tity Y is compared to the solution of Voight’s equation, and
the parameters of Eq. (3) and especiallyθ1 are estimated.
This approach turns out to be more precise than the rheolog-
ical approach, since the a priori informations needed for the
rheological approach are affected by uncertainties. This ap-
proach is usually applied to the prediction of the singularity
of large-scale processes, which can cause great damage. In
such a case, precise prediction allows for preventive actions.
This paper focuses on the empirical approach applied to the
destabilization of ice chunks from hanging glaciers.

2In some particular failure processes, which are not considered
in this paper, the absolute motion of the unstable ice masses is mod-
eled byf (Pralong and Funk, 2005b).
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2 Measurements

The motion of several unstable ice masses was monitored
by the Laboratory of Hydraulics, Hydrology and Glaciology
(VAW) of the Swiss Federal Institute of Technology Zürich
(ETHZ) within the scope of hazard assessment or research
programmes. Of the various data sets collected, three will be
considered here. The others do not contain enough measure-
ments or are affected by a scattering that is too broad to be
useful.

The first data set describes the relative motion of a calv-
ing ice mass (Figs.1a and b) measured byHaeberli(1975) at
Gruben glacier, Switzerland. The measurement equipment
was a wire fixed at one end to the unstable ice mass and at
the other end to a dial gauge attached to the stable part of
the glacier. The time of failure was registered. Haeberli con-
sidered the relative velocitẏY (time derivative of the motion
Y ) of the unstable ice mass instead of the relative motionY .
The function used to describėY is thus the time derivative of
Eq. (3):

ḟ (t, θ) = θ3 (θ1 − t)θ2−1. (6)

The second data set corresponds to the acceleration of
an unstable ice mass measured by the authors in 2001 at
the front of the Eiger hanging glacier, Switzerland (Figs.2a
and b). The measurement equipment was a theodolite laser-
distometer installed at Eiger glacier (a fixed position near the
glacier) and one reflector mounted on a stake drilled into the
unstable ice mass. Reference reflectors installed on a rock
face close to the unstable ice mass enabled the correction of
the measurements, which are influenced by meteorological
conditions. For this data set, only the absolute motion (de-
noted byY a) is known. The motion of the stable glacier part
upstream of the unstable ice mass was not measured. It is
assumed that during the measurements, the velocity of the
stable glacier part is constant. The function which models
the motionY a reads

f a(t, θ) =

{
θ5t + θ4 − θ3 ln(θ1 − t) if θ2 = 0
θ5t + θ4 −

θ3
θ2

(θ1 − t)θ2 if θ2 6= 0
, (7)

with θ5 the constant velocity of the upstream glacier part.
The time of failure of the unstable mass is not known as a
subfailure occurred prior to the main failure, and caused the
measurement equipment on the glacier to be lost.

The third data set describes the motion of several material
points (stakes with reflectors) installed on a single unstable
ice mass at the front of the M̈onch hanging glacier, Switzer-
land (Fig.3a). The measurements were performed by the
authors in 2003, with the same equipment as for the Eiger
hanging glacier. The three material points used for the anal-
ysis correspond to points 1, 2 and 3 of Fig.3a. Points 4 and 5
present a temporal shift of the beginning of the acceleration
(relatively to points 1, 2 and 3) and points 6 and 7 showed
no acceleration during the period of measurement. The mo-
tion of point 1 is shown in Fig.3b as an example. The time of
failure of the unstable ice mass is unknown, for the same rea-

Fig. 2. Data set of Eiger glacier, Switzerland.(a) Photo of the
measured unstable ice mass. The unstable mass is approximately
60 m high, 150 m long (direction normal to the ice flow) and 30 m
wide. (b) Motion Ya

−θ5t versus time (crosses) and its associated
fit (solid line) based on Eq. (7). The estimated parametersθ̂i of
Eq.7 are listed in Table1. The predicted failure time (correspond-
ing to abscissa zero) was 20 August 2001.(c) Residuals of the fit.
d) Fourier analysis of the residuals.

son as for the Eiger measurements3. The measurements were
affected by slight variations in the position of the theodolite

3Here only equipment at points 1 and 2 were lost. But the sec-
ondary failure, which led to this loss, reduced the mass of the unsta-
ble ice chunk, relaxed the stresses responsible for the destabiliza-
tion process and thus induced a discontinuity in the acceleration of
point 3. After that event, the unstable ice mass continued to fall in
successive partial beaks (the measurements of the other points gave
therefore no better results).
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Fig. 3. Data set of M̈onch glacier, Switzerland.(a) Photo of the
measured unstable ice mass. The numbers indicate the location
of the measured points. The unstable mass is approximately 50 m
high, 300 m long (direction normal to the ice flow) and 40 m wide.
The distance between points 1, 2 and 3 amounts to approximately
30 m. (b) Motion Ya

−θ5t versus time (crosses) of point 1 and its
associated fit (solid line) based on Eq. (7). The estimated parame-
ters θ̂i of Eq. (7) are listed in Table1. The predicted failure time
(corresponding to abscissa zero) was July 4, 2003.(c) Residuals of
the fit. The solid line indicates the fit of the log-periodic oscillations
(see Sect.5). The dashed line shows the smooth cruve of the residu-
als. (d) Air temperature at Jungfraujoch (MeteoSwiss data) located
one kilometer from the glacier (solid line). The dotted line depicts
the ice melting point.

(AppendixA). To account for these variations, the position
of the theodolite was calculated at each measurement cycle

from the position of four reference reflectors located on rock
faces around the theodolite (AppendixA). Again, only the
absolute motionY a is known. It is modeled by Eq. (7). It will
again be assumed that the velocity of the stable glacier part
is constant. For this data set, this assumption is questionable,
since a significant increase in the air temperature above the
melting point occurred during the failure process (Fig.3d),
and could have caused an acceleration of the glacier, thereby
modifying the velocityθ5. The measurements revealed a
variation in the velocityẎ a of points 4 and 5 which could be
related either to air temperature4 or to the beginning of the
destabilization process. For points 1, 2 and 3, the measure-
ments did not reveal variations in the velocity which could
be related to air temperature.

The estimates of the parametersθi (using a least squares
method) for the failure of the three different glaciers are re-
ported in Table1. The residuals from the fits are shown in
Figs.1c, 2c and3c. For the Gruben data set, the estimated
failure timeθ1 occurred some minutes before the observed
failure. The residuals of the Eiger data set show strong os-
cillations. The Fourier analysis (Fig.2d) revealed a domi-
nant frequency corresponding to one day. Since the absolute
motionY a is considered, these oscillations can be associated
to the daily fluctuations of the basal sliding. Such fluctua-
tions are commonly observed on glaciers (e.g.Sugiyama and
Gudmundsson, 2003). The residuals of the M̈onch data set
show clear log-periodic oscillations. This behavior will be
discussed in Sect.5. Because of the few data points, the
residuals of the Gruben data set do not allow to validate the
presence of log-periodic oscillations. Nevertheless, the data
set has been tentatively fitted by using the model with log-
periodic oscillations5.

3 Non-linear regression analysis

The aim of this section is to present a method to obtain es-
timates of the parameters of the non-linear function3 and
their confidence intervals. The data set of the Gruben glacier
is considered for illustration (Fig.1).

The fitting process should account for the fact that the fail-
ure time must be greater than the time of the last observation;

4The following model is considered to support the analysis of
the dependence of the glacier velocity to the air temperature. A lin-
ear water reservoir model (e.g.Hock and Noetzli, 1997) is used to
estimate the water level in the glacier. The water supply of the reser-
voir is the water resulting from the melt of the snow covering the
glacier. The melting rate is estimated with the air temperature. The
water level can then be related to the basal sliding and the glacier
velocity (e.g.Sugiyama and Gudmundsson, 2003).

5The increase of the noise amplitude at the end of the time series
(Fig.1c) does not only result from the smaller sampling time, which
magnifies the noise of the derivative. Indeed, the inaccuracy of the
measurements, which amounts according toHaeberli(1975) to ap-
proximatively 0.3 mm, leads to a value of the root-mean-square er-
ror of approximatively 0.025 md−1. This is two times smaller than
the error of the fit without oscillations and similar to the error of the
fit with oscillations (see Table1).
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Table 1. Values of the estimated parametersθ̂i for the five data sets analyzed in this paper. The values ofθ̂2 to θ̂5 in the upper part of the
table are identified by using the model without log-periodic oscillations (Eq.6 or 7). The values of̂θ1 to θ̂8 in the lower part of the table are
identified by using the model with log-periodic oscillations (Eq.12 or 13, see Sect.5). θ1 andθ4 are integration constants. They depend on
the value oft0 andY (t0), and do not influence the shape of the acceleration (the differential Eq. (1) depends only onα andA; that is not
on θ1 andθ4). They are thus not reported in this table. Only the values ofθ̂1 corresponding to the measurements at Gruben and Mönch are
reported for discussion (see text). The value of the estimated parameter of the steady motion (θ̂5) vanishes for the measurement at Gruben,
since the relative motion of the unstable ice mass was measured. The values of the parameters corresponding to the model with log-periodic
oscillations have not been determined for the measurements at Eiger, since no oscillations were observed (see text). The root-mean-square
error (rmse) is also reported for the fits with and without log-periodic oscillations. The unit md−1 refers to the Gruben data set (velocity of
the unstable ice mass) and the unit m to the other data sets (displacement of unstable ice masses).

Parameter Units Gruben Eiger Mönch1 Mönch2 Mönch3

θ̂1 d 12.490 120.81 135.59 141.77

θ̂2 − 0.523 −0.110 −1.573 −2.567 −2.858

θ̂3 md−θ2 0.545 1.770 1.28e3 1.38e5 5.61e5

θ̂5 md−1 0 0.039 0.102 0.106 0.105

rmse md−1 / m 0.055 0.007 0.020 0.022 0.021

θ̂1 d 12.493 108.54 106.53 108.00

θ̂2 − 0.534 −0.749 −0.685 −0.879

θ̂3 md−θ2 0.554 32.50 21.31 37.90

θ̂5 md−1 0 0.098 0.101 0.102

θ̂6 − 0.030 0.013 0.014 0.020

θ̂7 log(d) 0.090 0.505 0.510 0.537

θ̂8 − 1.095 0.469 5.116 2.722

rmse md−1/m 0.032 0.012 0.013 0.013

that is, θ1> max(ti). Moreover, according to Eq.4, θ2<1.
The following parameter transformations force the parame-
tersθi to satisfy these constraints:

θ1 = max(ti)+exp(φ1), θ2 = 1−exp(φ2), θ3 = φ3, (8)

whereφ is the new parameter set oḟf .

The subplots on the diagonal of the Fig.4 are the profile-t
plots, the other subplots are the profile traces. The profile-t

plots show the dependence of the profile-t functionτk on the
parametersφk (solid line).τk is the signed square root of the
likelihood ratio test statistic for a null hypotheses aboutφk

(AppendixB; Bates and Watts, 1988). In comparison, the
test statistic based on the linear approximation of the regres-
sion in φ̂ (the estimatêφ is depicted by a cross) is displayed
using a dash-dotted line. It is linear inφk. The confidence
interval derived fromτ (AppendixB) is depicted by dashed
lines, and the confidence interval derived from the linearized
statistic test by dotted lines. Since the linear approximations
are excellent, the difference can barely be seen.

The off-diagonal diagrams display the profile traces (Ap-
pendixB; Bates and Watts, 1988). They represent the corre-
lations between the different parametersφi in the vicinity of
φ̂. In each profile subplot, the closer the two lines are to each
other, the more the parameters of the subplot are correlated.

4 Sensitivity analysis

This section attempts to determine the influence of the mea-
surement scheme on the accuracy of the prediction. The ac-
curacy of the prediction is quantified by the size of the confi-
dence interval for the time of failure.

4.1 Method

The set of the measurement times(t1, ..., tn) and the accu-
racy of the measurements are fixed by the parameter setS

S = (σY , δY , 1tE, 1tB) , (9)

whereσY is the standard deviation of the measurements,δY

is the periodicity of the measurements,1tE=θ1−tE is the
time span between the end of the measurements (at timetE)
and the failure (at timeθ1) and1tB=θ1−tB is the time span
between the beginning of the measurements (at timetB) and
the failure.

In order to analyze the sensitivity of the accuracy of the
prediction to the parametersSi , a collection of synthetic data
sets is created with Eq. (3) by using the values of the parame-
tersθi identified for three analyzed break-off events (Gruben,
Eiger, Mönch1; Table1) and with different sets of measure-
ment times and different accuracies of measurements (cor-
responding to different values ofSi). A synthetic Gaussian
noise is assumed according to the value of the parameterσY .
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Fig. 4. Non-linear regression analysis of the Gruben data set (see text). The diagonal diagrams show the profile-t plots. The 95% confidence
interval of each parameter is indicated by dashed lines. The off-diagonal diagrams show the profile traces. The 95% confidence contours
(dotted lines) of the pair-parameters are also shown.

The periodicity of the measurements is supposed to be con-
stant with time and to equalδY . In this section, we assume
no further disturbances (like daily variations ofθ5 or log-
periodic oscillations), even though they could influence the
accuracy of the forecast. The disturbanceZ has, therefore,
a constant centered normal distribution and no time correla-
tion.

The sensitivity analysis consists in letting the parameters
Si vary independently around defined reference valuesS∗

i

and analyzing the effect of these variations on the confidence
interval ofθ1 by using the non-linear regression analysis pre-
sented in Sect.3. The reference valuesS∗

i are set at

S∗
=

(
σ ∗

Y =0.01 m, δ∗

Y =0.05 d, 1t∗E=3 d, 1t∗B=30 d
)
. (10)

The valueσ ∗

Y is given by the accuracy of today’s theodo-
lite laser-distometers6. δ∗

Y corresponds approximately to one
measurement per hour. Experience has shown that a precise
prediction emerges only a few days before the effective col-
lapse. Therefore,1t∗E is chosen as three days.1t∗B corre-
sponds to a time series of measurements (until failure) of one

6This accuracy is obtained by normalizing each measurement
with reference measurements (in a similar way to the method used
for differential GPS measurements).

month. The unstable ice chunks are regularly losing mass
by fracture during the acceleration process. If the detached
mass is significant, the acceleration of the remaining unsta-
ble ice part shows a discontinuity. In that case, the data are
not described by Eq. (1) anymore. Other phenomena, like ice
melting or strong variations in basal sliding may also affect
the acceleration of the unstable ice mass (Pralong and Funk,
2005b). The time span1tB used for a prediction should cor-
respond to the last time span prior to the failure during which
no external disturbances interfere with the failure process.
The reference value1t∗B corresponds to a mean of values ob-
served in practice.

For this analysis, it will be assumed that the relative mo-
tion Y of the unstable ice mass is known. Therefore, Eq. (3)
(with parametersθ1 to θ4) is considered. The parameter
transformation as given by Eq. (8) is applied to the four pa-
rametersθi

θ1 = max(ti) + exp(φ1), θ2 = 1 − exp(φ2),

θ3 = φ3, θ4 = φ4 . (11)
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Fig. 5. Influence of the value of1tE (a) and1tB (b) on the 95%
confidence interval ofθ1. The solid lines with the marks ”×” (the
dashed lines with ”◦” and the dash-dotted lines with ”+”, respec-
tively) are calculated by analyzing data sets synthesized with Eq.3
and the valueŝθi (see Table1) estimated from the measurements
at Gruben (Eiger and M̈onch1, respectively). The horizontal dotted
lines on both panels correspond to the estimate ofθ1. The inclined
dotted line in panel a) and the vertical dotted line in panel b) depict
the timetE of the end of the measurements.

4.2 Results and discussion

The variations in the 95% confidence interval forθ1 as a
function of Si are presented in Fig.5. For the three ana-
lyzed break-off events (Gruben, Eiger, Mönch1), the results
are qualitatively similar. The influence ofσY andδY is here
similar to the case of a linear regression and is not presented
(the size of the confidence interval is proportional toσY and
to δY

0.5). Only the influence of1tE and1tB is considered.
The size of the confidence interval decreases with decreasing
1tE (Fig. 5a), since the information about the failure time
contained in the data sets becomes more accurate astE tends
to θ1. The size of the confidence interval decreases with
increasing1tB (Fig. 5b), since a longer time span of mea-
surements reduces the effects of the inaccuracy of individual
measurements.

The analysis of the profile-t plots shows that thet-profile
τ(φ1) remains approximately linear for all1tE and1tB (for
the influence of1tE on τ(φ1) see Fig.6). The confidence
interval ofφ1 is therefore symmetric. The asymmetry of the
confidence interval forθ1 observed in Fig.5 is due to the non-
linearity of the parameter transformation111. The analysis of
the profile traces shows that1tE and1tB strongly influence
the correlation betweenθ1 and θi 6=1 (for 1tE, see Fig.6).
The correlation between the parameters strongly influences
the size of the confidence interval.

Figure 5a shows that accurate long-term predictions are
difficult. The confidence interval ofθ1 is small only if the
time span betweentE and the time of failure does not ex-
ceed a few days. For earlier end pointstE, the confidence
interval is large and its lower boundary tends toward the line
corresponding to the timetE of the last measurement (the in-
clined dotted line in Fig.5a). This suggests that a forecast
performed at an early stage of the destabilization can falsely
lead to the prediction of an impending failure. This problem
was observed byBufe and Varnes(1993) for the prediction of
earthquakes and experienced by the authors during the pre-
diction of the failure of hanging glaciers. To estimate the
quality of the prediction of an impending failure, the uncer-
tainty on the forecast has to be determined or/and an a priori
value of the parametersθ2 and θ3 has to be approximately
known.

For practical application,σY is constrained by the mea-
surement method,1tE is continuously decreasing during an
ongoing measurement process andδY , and1tB are free pa-
rameters. To improve the accuracy of the prediction,σY can
be decreased by considering the mean of repeated measure-
ments orδY simply decreased. However, the measurements
at Eiger and M̈onch (Figs.2c and3c), revealed that the dis-
turbanceZ is a correlated noise for time lags of less than
one day7. For such a noise, measurements with a lag less
than one day do not improve the accuracy of the prediction.
During a destabilization process, it is attempted to conduct
measurements until failure occurs, in order to continuously
improve the prediction. However, for technical reasons, the
measurements could be interrupted prior to the failure. If
1tE is too large, the prediction is inaccurate.1tB is chosen
as large as possible, but is limited by the presence of external
disturbances which may impose the value oftB (see above).

The differences in the size of the confidence intervals ob-
served in Fig.5 for the destabilization processes at Gruben,
Eiger and M̈onch are due to different values of the param-
etersθ2 andθ3 (Table1). Figure7a shows the influence of
the variation inθ2 on the confidence interval ofθ1, the pa-
rameterθ3 and the parameter setS remaining constant. The
minimum of the confidence interval corresponds to approxi-
matelyθ2=0.6. Figure7b shows the influence of the varia-
tion in θ3 on the confidence interval ofθ1, the parameterθ2
and the parameter setS remaining constant. A large value
of θ3 is associated with an important displacement of the un-
stable ice mass during the failure process; that is, the noise
Z becomes small relative to the variations inY (the size of
the confidence interval is proportional toθ−1

3 ). Therefore,

7For the Eiger data set, this is probably due to the daily varia-
tions in the basal sliding (see above), which disappear by measuring
the relative motion of the unstable ice mass. For the Mönch data set,
this is likely due to daily variations in the position of the theodolite.
The daily variations apparently have not been entirely removed by
the correction of the theodolite position (see AppendixA). For the
Gruben data set, where daily variations should theoretically not ap-
pear (here, the relative motion of the unstable ice mass is measured),
the sparse data does not allow to determine whetherZ is a correlated
or an uncorrelated noise.
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Fig. 6. Influence of1tE on the profilet-plots and profile traces. The non-linear regression analysis is based on two data sets synthesized with
Eq. (3) and the value of the Eiger parametersθi listed in Table1. The value of the parametersSi is for a)S=

(
σ∗
Y
, f ∗

Y
, 1tE=0.1 d, 1t∗B

)
and for b)S=

(
σ∗
Y
, f ∗

Y
, 1tE=7.5 d, 1t∗B

)
, where the reference values (marked with∗) are given by Eq. (10). The pictures show the profile-t

plots with 95% confidence intervals. The parameter transformation is given by Eq. (11).
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larger values ofθ3 decrease the confidence interval ofθ1.
This effect explains the main differences in the size of the
confidence interval observed between the different break-off
events in Fig.5.

5 Log-periodic oscillations

5.1 Background

Log-periodic oscillations are characteristic oscillations
which may occur during a critical process leading to a finite-
time singularity. They are superimposed on the motionf (t)

with a frequency proportional to log(θ1−t). They appear as
solutions of Voight’s equation when the exponentθ2 becomes
complex (Sornette and Sammis, 1995). For θ2 6=0, the real
part flpo(t, θ) of the model function with oscillations takes
the form (Sornette and Sammis, 1995)

flpo(t, θ) = θ4 −
θ3
θ2

(θ1 − t)θ2 ·[
1 + θ6 sin

(
2π

log(θ1−t)
log(θ7)

+ θ8

)]
,

(12)

whereθ6 is the relative amplitude8, θ7 is the logarithmic pe-
riodicity andθ8 is the phase shift of the log-periodic oscil-
lation. An acceleration with oscillations, which is superim-
posed on a steady motion takes the form

f a
lpo(t, θ) = θ5 t + θ4 −

θ3
θ2

(θ1 − t)θ2 ·[
1 + θ6 sin

(
2π

log(θ1−t)
log(θ7)

+ θ8

)]
.

(13)

Log-periodic oscillations have been observed for numerous
finite-time singularities: fracture of structures, earthquakes,
rock bursts, financial crashes (see the review ofZhou and
Sornette, 2002) and were suggested byLüthi (2003) in the
case of failure of hanging glaciers. Several attempts have
been made to explain log-periodic oscillations.Ide and Sor-
nette(2002) related log-periodic behavior with systems that
contain a relaxation mechanism reducing the damage in the
system. However, they did not obtain a response from the
system corresponding to Eq. (12). Sahimi and Arbabi(1996)
related log-periodic behavior to dynamic crack interactions
at different scales. The physical meaning ofθ7 is not fully
revealed by this approach (Lüthi, 2003), either.

5.2 Observations

The measurements carried out at the Mönch hanging glacier
show log-periodic oscillations: Figure3c presents the os-
cillations isolated from the global acceleration (residuals
Ri=Y a

i −f a(ti, θ) for a fitted functionf a of the form of
Eq. 7) for the material point 1 (Fig.3a). As expected, the
other two points considered (points 2 and 3; Fig.3a) also
present log-periodic oscillations (Figs.8a and b). For all

8Although θ6 is a constant value, the amplitude of the log-
periodic oscillations varies with time, since the term multiplying
the square bracket varies with time. Ifθ2<0, the amplitude of the
oscillations increases until failure; ifθ2>0, it decreases.

Fig. 7. Influence of the value ofθ2 (a) andθ3 (b) on the 95% con-
fidence interval ofθ1. The solid lines marked with “×” (the dashed
line with “◦” and the dash-dotted line with “+”, respectively) are
calculated by analyzing data sets synthesized with the valueθ̂3 (for
panel a), the valuêθ2 (for panel b) estimated from the measure-
ments at Gruben (Eiger and M̈onch1, respectively), the values of
the parameter setS∗ (Eq. 10) and the Eq. (3). The vertical solid
lines (dashed and dash-dotted lines, respectively) correspond to the
valueθ̂2 (for panel a), to the valuêθ3 (for panel b) estimated from
the measurements at Gruben (Eiger and Mönch1, respectively). The
horizontal dotted lines on both panels correspond to the estimate of
θ1. The vertical dotted line in panel a) marks the singularity of
Eq. (3) at θ2 = 0.

three points, the fit of the log-periodic oscillations is mostly
in accordance with the smooth curve through the residuals
Ri . In the case of Gruben, the existence of log-periodic os-
cillations is probable but cannot be verified due to the sparse
data (Fig.1c). For the measurements at Eiger, no oscillations
could be observed (Fig.2c). This, however, does not mean
that they do not exist; they might be hidden by the daily vari-
ations in the glacier velocity.

The amplitude of the log-periodic oscillations equals

−
θ3

θ2
(θ1 − t)θ2 θ6 . (14)

The comparison of the oscillations observed for the three
points at M̈onch (Fig.8c) reveals the same amplitude of os-
cillation even thoughθ2 andθ3 do not have the same values
for the different points9. Thus, the parameterθ6 compensates
for the different values ofθ2 andθ3. θ6 is therefore not con-
stant (Table1). Figure8c also shows that the oscillations are
in phase, at least during the period of the measurements. The

9The global displacement, given by−(θ3/θ2) (θ1−t)θ2, has not
the same magnitude for points 1, 2 and 3. The global displace-
ment from the beginning to the end of the measurements amounts
to 3.2 [m], 2.95 [m] and 2.4 [m] for point 1, 2 and 3, respectively.
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Fig. 8. Log-periodic oscillations observed at Mönch. They corre-
spond to the residualsYa

−f a(t, θ) associated with(a) point 2 in
Fig. 3a and(b) point 3 in Fig.3a. The solid lines depict the fit
of the log-periodic oscillations. The dashed lines show the smooth
curve of the residualsYa

−f a(t, θ). (c) Superposition of the three
observed oscillations. The solid line refers to Mönch1; the dashed
line to Mönch2; the dash-dotted line to M̈onch3. The values of the
oscillations parameters are given in Table1.

estimates of the logarithmic wavelengthθ7 is similar for the
three points, in contrast to the phase shiftθ8 (Table1). The
variations of the phase shift compensate for the difference in
the estimated values of the failure timeθ̂1 reported in Table1
(lower part of the table).

A (H, q)-analysis can be alternatively used to identify the
parametersθ6, θ7, θ8 of the log-periodic oscillations (Zhou
and Sornette, 2002). In this method, the parametersθ3 and
θ4 of the general trend disappear and thus do not need to be
identified. The disadvantage of this method is that it requires
the estimation of a derivative (the (H, q)-derivative ofY ),
which magnifies the noise of the data.

5.3 Predictions

A prediction from a model with no log-periodic oscillations
provides inaccurate results. Figure9 shows, for the M̈onch1
data set, that̂θ1 strongly varies with1tE if the fitting func-
tion does not include log-periodic oscillations (this effect is
reduced for small1tE). In contrast,θ̂1 is much less sensitive

Fig. 9. Influence of the variation of1tE on the predicted time of
failure θ̂1 estimated by fitting the M̈onch1 data set using the model
without log-periodic oscillations (Eq.7) (dash-dotted line) and with
log-periodic oscillations (Eq.13) (solid line). They-label “variation
of prediction” means the difference betweenθ̂1 estimated by vary-
ing 1tE and θ̂1 estimated with Eq. (13) and the complete data set
(minimum1tE). The two dotted lines show the 95% confidence in-
terval of the prediction using the model with oscillations. The inter-
val is estimated using an autoregressive moving-average (ARMA)
model (e.g.Brockwell and Davis, 2002) which assumes a lagged
dependence of the residual terms. The dashed line depicts the time
tE of the end of the measurements. The fits are performed with an
imposed value ofθ5.

to 1tE when the log-periodic oscillations are taken into ac-
count (see also Table1). The dependence ofθ̂1 on1tE in the
former case results from the fact that the last measurements
of the time series have the largest influence on the prediction
(due to the non-linearity of the function) and that the value of
these last measurements varies around the global trend (due
to the presence of log-periodic oscillations) when1tE varies.
A positive deviation of the last measurements (Fig.8) from
the global trend leads to an underestimation of the time span
until failure, whereas a negative deviation leads to an overes-
timation.

Figure 9 also illustrates that a forecast performed at an
early stage of the destabilization cannot exclude an impend-
ing failure, since, with increasing1tE, the confidence inter-
val tends toward the line corresponding to the time of the
prediction (dashed line). If the log-periodic oscillations are
not considered in the function used for the prediction, the
forecast of an impending failure could be erroneous, since
the variations observed in the prediction (dash-dotted line)
can induce an underestimation of the time span until failure.

6 Conclusions

Accurate predictions of the failure of hanging glaciers are
only possible when the time between the end of the measure-
ments and the effective time of failure becomes small (order
of magnitude of one week). An early monitoring of the fail-
ure process increases the accuracy of the prediction, as long
as no external disturbances interfere with the failure process
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during the measurement period. The value of the parameters
θ2 andθ3 describing the acceleration process strongly influ-
ences the accuracy of the forecast, since the model to be fitted
is non-linear. If the values of these parameters cannot be esti-
mated in advance, an a priori approximation of the accuracy
of the prediction is not possible; it only emerges during the
prediction process.

Log-periodic oscillations were clearly observed in one of
the three break-off events analyzed. For this event, the am-
plitude, frequency and phase of the oscillations appear to
be spatially homogeneous over the entire unstable ice mass,
whereas the shape of the global acceleration is spatially inho-
mogeneous (this behavior has also been observed recently on
a hanging glacier in the north face of Weisshorn). This sug-
gests that the oscillations may result from a global process
acting on the entire unstable ice mass. It has been shown sub-
sequently that the influence of the oscillations on the forecast
is significant. This implies, if oscillations are observed in a
data set, that they must be considered in order to achieve an
accurate prediction.

It was not possible to observe disturbances that are intrin-
sically related to the destabilization process, like the jerky
motion observed byHaeberli(1975), since important exter-
nal disturbances hid this behavior, and the accuracy and fre-
quency of the measurements were not adequate. Further in-
vestigations should be carried out to determine the properties
of these intrinsic disturbances. Information for maximizing
the accuracy of the prediction and minimizing the number of
necessary measurements could be gained through this analy-
sis.

The prediction of the effective time of failure is based on
the assumption that the failure time parameterθ̂1 corresponds
to the effective time of the break-off; that is, the failure oc-
curs at infinite velocity. This assumption is not precise for
ductile materials (e.g. ice), since the fracture is usually ob-
served to occur at an earlier stage of the acceleration process,
i.e. at a finite velocity (e.g.Lemaitre, 1996). This behavior
can be related to the inhomogeneity of the crack net (Pra-
long and Funk, 2005a, Appendix A). Recent observations
performed on a hanging glacier at the Weisshorn north face
also suggest that the failure occurs at a finite velocity. Fur-
ther investigations need to be carried out in order to improve
the physical understanding of the failure processes so that an
appropriate model of fracture can be obtained.

Appendix A Reconstruction of the theodolite position
from measurements

The measurements carried out at the Mönch hanging glaciers
were affected by the variation in the position of the theodo-
lite. The theodolite was installed on the terrace of a building
(Sphinx building at Jungfraujoch) which is subject to small
oscillations due to thermal constraints in the structure of the
building and probably to the motion of the foundations. Four
reference points located on rock spurs around the theodolite

were installed to reconstruct the position of the theodolite.
This reconstruction is an overdetermined inverse problem.

The forward problem, which couples the position
(P tx, P ty, P tz) and the horizontal rotationφ of the theodo-
lite to the distancedi , the cosine cosvi of the vertical angle,
the cosine coshi of the horizontal angle and the sine sinhi of
the horizontal angle obtained by the measurement of a refer-
ence pointi (i = 1, ..., m, with m the number of reference
points, herem = 4) in a spherical coordinates system, is
given by

di =
(
(P ix−P tx)

2
+(P iy−P ty)

2
+(P iz−P tz)

2
)1/2

,

cosvi =
P iz−P tz

di
,

coshi = c1

(
(P iy − P ty) + (P ix − P tx)

sinφ
cosφ

)
,

sinhi = c1

(
(P ix − P tx) − (P iy − P ty)

sinφ
cosφ

)
,

(A1)

where(P ix, P iy, P iz) is the position of the reference point
i and

c1 =

(
1 +

sin2 φ

cos2 φ

)−1
(di sinvi cosφ)−1,

sinvi =
(
1 − cos2 vi

)1/2
.

(A2)

The referential(x, y, z) has to be chosen such that cosφ 6= 0.
The linearized forward system then reads

di − d
(0)
i

cosvi − cos(0) vi

coshi − cos(0) hi

sinhi − sin(0) hi

 = G(0)


P tx − P t

(0)
x

P ty − P t
(0)
y

P tz − P t
(0)
z

φ − φ(0)

 , (A3)

where the superscript(0) denotes the linearization point, and
G(0) is the Jacobian matrix (a 4m×4 matrix) defined as

G(0)
= G|

(P t
(0)
x , P t

(0)
y , P t

(0)
z , φ(0))

, (A4)

with

G =


∂di

∂P tx

∂di

∂P ty

∂di

∂P tz
0

∂ cosvi

∂P tx

∂ cosvi

∂P ty

∂ cosvi

∂P tz
0

∂ coshi

∂P tx

∂ coshi

∂P ty

∂ coshi

∂P tz

∂ coshi

∂φ
∂ sinhi

∂P tx

∂ sinhi

∂P ty

∂ sinhi

∂P tz

∂ sinhi

∂φ

 . (A5)

The system (A3) is inverted in the sense of the least-squares
approach. The inverse system reads

P t
(n+1)
x

P t
(n+1)
y

P t
(n+1)
z

φ(n+1)

 =


P t

(n)
x

P t
(n)
y

P t
(n)
z

φ(n)



+A(n)


d

(n+1)
i − d

(n)
i

cos(n+1) vi − cos(n) vi

cos(n+1) hi − cos(n) hi

sin(n+1) hi − sin(n) hi

 . (A6)

The superscripts(n+1), (n) denote the solution at the(n+1)th
iteration andnth iteration, respectively. d

(n)
i , cos(n) vi ,
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cos(n) hi and sin(n) hi are evaluated with Eq. (A1) at P t
(n)
x ,

P t
(n)
y , P t

(n)
z andφ(n), and the 4×4m matrixA(n) is given by

A(n)
= (G(n)T G(n))−1G(n)T , (A7)

where the Jacobian matrixG(n) reads

Gn
= G|

(P t
(n)
x , P t

(n)
y , P t

(n)
z , φ(n))

. (A8)

The system (A6) is iteratively solved until the relative differ-
ence between the solution of the(n + 1)th andnth iterations
becomes less than 10−6.

The standard deviation of the displacement of the theodo-
lite in east, north and vertical directions amounts to 0.7,
1.1 and 4 mm and the standard deviation of the rotation to
9×10−3 degrees.

Appendix B Profile-t plots and profile traces

The sum of squares of residuals is

S(θ) =

n∑
i=1

(yi − f (ti, θ))2, (B1)

wheref is the model function,θ are the parameters off , n

is the number of measurements andyi is the measurements
at timeti . Let θ̂ ·|k(θk) be the vector of parameters that min-
imizesS(θ) subject to a given valueθk. The likelihood ratio
test statistic for a null hypothesis aboutθk alone is

S̃k(θk) = (n − p)
S(θ̂ ·|k(θk)) − S(θ̂)

S(θ̂)
, (B2)

wherep is the number of parameters ofθ . For linear regres-
sions,S̃k(θk) is a quadratic function. The signed square root
of S̃k

τk(θk) = sign(θk − θ̂k)
(
S̃k(θk)

) 1
2

(B3)

is called thet-profile. It is linear for a linear regression func-
tion. The nonlinearity ofτk therefore reflects the nonlinearity
of the regression function around the best-fitting parameter.

Confidence intervals for a single parameterθk can be read
off the t-profile plot by intersecting horizontal lines at±q

tn−p

1−α

with the t-profile and determining the respectiveθk values.
q

tn−p

1−α is the 1−α quantile of thet-distribution withn−p de-
grees of freedom.

The functionsθ̂j |k(θk) are called the profile traces ofθk.
For plotting, the profile traceŝθj |k(θk) and θ̂k|j (θj ) are su-
perimposed in the same panel. The axes for the two curves
must have identical meaning, which means that for one of the
curves, the argument is plotted in a vertical direction and the
result in a horizontal one.

For more informations about profile-t plots and profile
traces, the reader is invited to consultBates and Watts(1988).
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