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Abstract. The velocity of unstable large ice masses from Agliardi, 2003 Amitrano et al, 2005, earthquakés(e.g.

hanging glaciers increases as a power-law function of timeBufe and Varnes1993 Bowman et al. 1998, volcanic

prior to failure. This characteristic acceleration presents aeruptions (e.gVoight, 1988, fracture of structures (e.go-

finite-time singularity at the theoretical time of failure and hansen and Sorneft2000, inflation (Sornette et al.2003,

can be used to forecast the time of glacier collapse. How{inance, economy, populatiodghansen and Sornet@007)

ever, the non-linearity of the power-law function makes the and break-off of ice chunks from hanging glaciddaéberlj

prediction difficult. The effects of the non-linearity on the 1975 Flotron 1977 Iken, 1977 Rothlisberger1981; Lithi,

predictability of a failure are analyzed using a non-linear re-2003 Pralong and Funk2005ab).

gression method. Predictability strongly depends on the time  Finite-time singularities are caused by positive feedback

window when the measurements are performed. processes, which lead to a catastrophic evolution of the ob-
Log-periodic oscillations have been observed to be superserved quantitiesSammis and Sornet{2002 reviewed pos-

imposed on the motion of large unstable ice masses. Théive feedbacks involved in the rupture of matericgdrnette

value of their amplitude, frequency and phase are observed tet al.(2003 mentioned a positive feedback involved in infla-

be spatially homogeneous over the whole unstable ice massion.

Inclusion of a respective term in the function describing the A suitable model for such catastrophic evolutions is given

acceleration of unstable ice masses greatly increases the agy \wight's differential equation\oight, 1988

curacy of the prediction.

F=a0)". (1)

where the dot denotes the time derivative afd; A, «,
c1, c2) is the function describing the temporal evolution of

The prediction of ice avalanches from hanging glaciers is? measured quantity. Observatiorjsare obtained at times

based on the progressive acceleration observed on large ufi: TheY include a random disturbangg i.e.
stable ice masses prior to their collapse. A suitable model of
the observed acceleration presents a finite time singuIarity,Yl' = St

that is, the velocity tends to infinity as the time approaches aA da=1 th ters d ibing th tastronhi
finite time. This finite time corresponds to the time of failure. ande>1 are the parameters describing the catastrophic

Finite time singularity models have been used for Char_evolutlon ofY andcy, ¢ are the two integration constants.

acterizing a large variety of phenomena. Rheologists have

suggested such models to describe the ductile fracture Otfnat the . ; N e )

S progressive acceleration of representative seismic quanti-
samples of rock, soil, .hlgh—performance metal aIon;s, CONties is observed only by stacking many sequences of seismic activ-
crete, polymers and ice (seéarnes 1983 for a review iy ang results from a different mechanism than critical phenomena.
and Voitkovskii, 1960 Szyszkowski and Glocknet986  zgller and Hainz(2002) claimed that the acceleration of seismicity
Mahrenholtz and Wul992 for laboratory ice). At large observed before large earthquakes may be spurious. They showed
scales, finite time singularity models have been proposedhat there is a 20% probability of observing the same acceleration
to describe the mechanisms of landslides (€msta and by chance in a synthetic catalog of random earthquakes. For these
reasons the presence of finite-time singularities in earthquakes (i.e.
Correspondence tavl. Funk the use of accelerating precursory seismicity to predict large earth-
(funk@vaw.baug.ethz.ch) quakes) is questionable.

1 Introduction

A a,c1,00)+ Z; . 2

This topic is controversial.Helmstetter et al(2003 argued
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described by Eq.1); that is, the relative motion of the unsta-
ble ice masses can be modeled b¥.

Two different approaches can be applied in order to pre-
dict the time of failures: a “rheological” and an “empiri-
cal” approach. The rheological approach considers Eg. (
(or a similar equation) as a constitutive relation for the evo-
lution of Y and looks for general relations for the parameters
A=A(o, T, ...) anda=«(o, T, ...), which may depend, for
example, on the stressand the temperaturE. An a priori
knowledge ofA and« (or equivalently ofg, and63) per-
mits then to estimate the time of failupg. For example, by
settingA=B(T) ¢’ , a=k+2 andY=1/(1— D), whereB(T)
is a function of temperature, and k are material parame-

b o ters andD is the classical damage variable of the continuum
=8 T damage mechanics (elgemaitre 1996, Voight's equation
o ! (Eq.1) reduces to
2z
24
S o 1 D= B(T)o" (1—- D)*. (5)

g.S 3 2..5 2 1j5 1 0j5 O
time before failure (d) This equation is the classical Kachanov-Rabotnov constitu-

c 02 T T T T T x - tive relation Kachanoy 1957 Rabotnoy 1969, modeling

— the accumulation of isotropic damage in material subject to

- 01 uniaxial load. EquationS) describes, therefore, a finite time

% 0 singularity if k>—1 (i.e.«>1). The rheological approach

E is appropriate for describing the fracture of homogeneous

3 -0.1 samples of ductile materials; however, a precise prediction

cannot be obtained. The application of this method to the

08— 55 2 15 1 05 0 description of the failure of large-scale structures by the in-
time before failure (d) tegration of a local damage evolution law (e.g. Byin a

: . _ large-scale domain can lead to an adequate capture of the
Fig. 1. Data set of Gruben glacier, Switzerlan@a) Photo of a

calving event similar to the one measuredHgeberli(1975. The physics of the global fracture (e.gyakhovsky et al{2001)
unstable mass is visible in the foregroun@h) Measured relative for earthqugkes, z.inBralong gnd FunKQOOSa for fracture .
velocity ¥ (Haeberlj 1975 versus time (crosses) and its associ- processes in glguers),. but fails to prgdlct accura.t?ly the time
ated fit (solid line) based on E){ The estimated parameteis of the global failure, since the conditions prevailing before
of Eq. 6) are listed in Tablel. The predicted failure time (corre- the failure process are largely unknown and the parameters
sponding to abscissa zero) was 9 September 1@JResiduals of ~ are subject to uncertainties.

the fit. The solid line indicates the fit of the log-periodic oscillations

In the empirical approach, in contrast to the rheological
(see Sect).

approachA anda (or 62 andds, respectively) are not a pri-
ori determined. The prediction of the failure tirigis thus

a fitting problem of measured data, where the critical quan-
tity Y is compared to the solution of Voight's equation, and
the parameters of Eq3) and especially; are estimated.

Integrating Eq. {) for «>1 and assuming thaf at the time
of the singularity is infinite, leads td/0ight, 1988

64— 03N —1) if 6=0 This approach turns out to be more precise than the rheolog-

f, 0)= {9 g —nf2 if 6, £0° 3 ical approach, since the a priori informations needed for the
4Tt 2 rheological approach are affected by uncertainties. This ap-

with 6, the time of failure g, a constant and proach is usually applied to the prediction of the singularity

of large-scale processes, which can cause great damage. In
6, = %~ 2 1 d 6e— (A 1))02-1 4 such a case, precise prediction allows for preventive actions.
] < and 63 = (A (@ —1)™=. 4) This paper focuses on the empirical approach applied to the

) . . ) destabilization of ice chunks from hanging glaciers.
For the failure of hanging glaciers, observations and numer-

ical simulations KHaeberlj 1975 lken, 1977 Pralong and
Funk 20053 show that the relative motion of an unstable 2|y some particular failure processes, which are not considered

ice mass (relative to the motion of the stable glacier part lo-in this paper, the absolute motion of the unstable ice masses is mod-
cated directly upstream of the unstable part) is adequatelgled by f (Pralong and Funk2005h.
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2 Measurements

The motion of several unstable ice masses was monitored
by the Laboratory of Hydraulics, Hydrology and Glaciology
(VAW) of the Swiss Federal Institute of Technologyzch
(ETHZ) within the scope of hazard assessment or research
programmes. Of the various data sets collected, three will be
considered here. The others do not contain enough measure-
ments or are affected by a scattering that is too broad to be
useful.

The first data set describes the relative motion of a calv-
ing ice mass (Figsla and b) measured yaeberli(1975 at
Gruben glacier, Switzerland. The measurement equipment
was a wire fixed at one end to the unstable ice mass and at
the other end to a dial gauge attached to the stable part of
the glacier. The time of failure was registered. Haeberli con-
sidered the relative velocity (time derivative of the motion
Y) of the unstable ice mass instead of the relative motion
The function used to describieis thus the time derivative of

Edg. @):

f(t,8)=6301—1)"1. (6)

The second data set corresponds to the acceleration of % oo e % ’fosg(x N . xx%
an unstable ice mass measured by the authors in 2001 at S ©of g e "&,,f x x % x 5
the front of the Eiger hanging glacier, Switzerland (Figgs. 8 oot X « % % % %%
and b). The measurement equipment was a theodolite laser- * x x X
distometer installed at Eiger glacier (a fixed position near the ~0.02—¢ - . L . : 5
glacier) and one reflector mounted on a stake drilled into the time before failure (d)

unstable ice mass. Reference reflectors installed on a rock d ,x10°
face close to the unstable ice mass enabled the correction of
the measurements, which are influenced by meteorological
conditions. For this data set, only the absolute motion (de-
noted byY @) is known. The motion of the stable glacier part
upstream of the unstable ice mass was not measured. It is
assumed that during the measurements, the velocity of the
stable glacier part is constant. The function which models % 05 1 15 2 25 8 35

~

N (]

amplitude (m)

e

the motiony @ reads period (@)
a Ost +64 —63In(O1—1) if 6,=0 Fig. 2. Data set of Eiger glacier, Switzerlanda) Photo of the
fo@, 0) = {QSI 4+ 04— 03 Gr—0% if 6,£0° (7) measured unstable ice mass. The unstable mass is approximately
02

60 m high, 150 m long (direction normal to the ice flow) and 30 m

with s the constant velocity of the upstream glacier part. wide. (b) Motion Y2—6st versus time (crosses) and its as§ociated
fit (solid line) based on Eq.7§. The estimated parametefs of

The time of failure of the un le m is not known
€ t. € o failure 0 t € unstab e. a§S $ not known as aEq.? are listed in Tabld. The predicted failure time (correspond-
subfailure occurred prior to the main failure, and caused the

. . ing to abscissa zero) was 20 August 200d). Residuals of the fit.
measurement equipment on the glacier to be lost.

X - . . d) Fourier analysis of the residuals.
The third data set describes the motion of several material

points (stakes with reflectors) installed on a single unstable

ice mass at the front of the &ch hanging glacier, Switzer- son as for the Eiger measureméntBhe measurements were

land (Fig.3a). The_ measurements were performed by .theaffected by slight variations in the position of the theodolite
authors in 2003, with the same equipment as for the Eiger

hanging glacier. The three material points used for the anal=3 | . , | h
ysis correspond to points 1, 2 and 3 of F3g. Points 4 and 5 Here only eqL_upment at pomts 1 and 2 were lost. But the sec-

. L. ._ondary failure, which led to this loss, reduced the mass of the unsta-
presgnt a tempqral shift of the beglnnln_g of the acceleratlorble ice chunk, relaxed the stresses responsible for the destabiliza-
(relatively to points 1, 2 and 3) and points 6 and 7 showedjon process and thus induced a discontinuity in the acceleration of
no acceleration during the period of measurement. The mopoint 3. After that event, the unstable ice mass continued to fall in
tion of point 1 is shown in Fig3b as an example. The time of successive partial beaks (the measurements of the other points gave
failure of the unstable ice mass is unknown, for the same reatherefore no better results).
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from the position of four reference reflectors located on rock
faces around the theodolite (Append¥}. Again, only the
absolute motiory2is known. Itis modeled by Eq7{. It will

again be assumed that the velocity of the stable glacier part
is constant. For this data set, this assumption is questionable,
since a significant increase in the air temperature above the
melting point occurred during the failure process (RBd),

and could have caused an acceleration of the glacier, thereby
modifying the velocityfs. The measurements revealed a
variation in the velocity2 of points 4 and 5 which could be

e related either to air temperatdrer to the beginning of the
# , 8 destabilization process. For points 1, 2 and 3, the measure-
“ LR / i i : ) ments did not reveal variations in the velocity which could
— — be related to air temperature.
b . . . . . . . . The estimates of the paramet@using a least squares

method) for the failure of the three different glaciers are re-
ported in Tablel. The residuals from the fits are shown in
Figs. 1c, 2c and3c. For the Gruben data set, the estimated
failure time#d1 occurred some minutes before the observed
failure. The residuals of the Eiger data set show strong os-

o cillations. The Fourier analysis (Fi@d) revealed a domi-
11010090 st?me bl?ore fa?i?ure (5,)0 4080 20 nant frequency corresponding to one day. Since the absolute
C motionY2is considered, these oscillations can be associated
' . to the daily fluctuations of the basal sliding. Such fluctua-
tions are commonly observed on glaciers (8ggiyama and
Gudmundssori2003. The residuals of the bhch data set
show clear log-periodic oscillations. This behavior will be
discussed in Secb. Because of the few data points, the
residuals of the Gruben data set do not allow to validate the
o 100 0 e0 70 60 ((%0 40 30 20 presence of log-periodic oscillations. Nevertheless, the data

set has been tentatively fitted by using the model with log-

periodic oscillations,

residuals (m)

3 Non-linear regression analysis

O

temperature (C°)

The aim of this section is to present a method to obtain es-
timates of the parameters of the non-linear functiand

_5 .
110 100 90 80 70 60 40 30 20

L A r

time before failure (d) their confidence intervals. The data set of the Gruben glacier
_ _ _ is considered for illustration (Fid.).
Fig. 3. Data set of Mbnch glacier, Switzerland(a) Photo of the The fitting process should account for the fact that the fail-

measured unstable ice mass. The numbers indicate the locatiofre time must be greater than the time of the last observation;
of the measured points. The unstable mass is approximately 50 m

high, 300 m long (direction normal to the ice flow) and 40 m wide.  4The following model is considered to support the analysis of
The distance between points 1, 2 and 3 amounts to approximatelyhe dependence of the glacier velocity to the air temperature. A lin-
30 m. (b) Motion Y265t versus time (crosses) of point 1 and its ear water reservoir model (e.gock and Noetz[i1997) is used to
associated fit (solid line) based on E@).(The estimated parame-  estimate the water level in the glacier. The water supply of the reser-
tersg; of Eq. (7) are listed in Tablel. The predicted failure time  voir is the water resulting from the melt of the snow covering the
(corresponding to abscissa zero) was July 4, 206®Residuals of  glacier. The melting rate is estimated with the air temperature. The
the fit. The solid line indicates the fit of the log-periodic oscillations water level can then be related to the basal sliding and the glacier
(see Sect). The dashed line shows the smooth cruve of the residu-velocity (e.g.Sugiyama and Gudmundss@®903.
als. (d) Air temperature at Jungfraujoch (MeteoSwiss data) located  SThe increase of the noise amplitude at the end of the time series
one kilometer from the glaCier (Sohd ”ne). The dotted line depiCtS (F|g 10) does not on|y result from the smaller samp“ng time, which
the ice melting point. magnifies the noise of the derivative. Indeed, the inaccuracy of the
measurements, which amounts accordingléeberli(1975 to ap-
proximatively 03 mm, leads to a value of the root-mean-square er-
ror of approximatively @25 md™1. This is two times smaller than
(AppendixA). To account for these variations, the position the error of the fit without oscillations and similar to the error of the
of the theodolite was calculated at each measurement cyclfit with oscillations (see Tabl#).
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Table 1. Values of the estimated parametérgor the five data sets analyzed in this paper. The value9§ 6 65 in the upper part of the

table are identified by using the model without log-periodic oscillations 6€1.7). The values oy to A5 in the lower part of the table are
identified by using the model with log-periodic oscillations (Eg.or 13, see Sect). 61 andé, are integration constants. They depend on

the value offg andY (¢g), and do not influence the shape of the acceleration (the differentiallEdepends only o and A; that is not

on 64 andd,). They are thus not reported in this table. Only the valued aorresponding to the measurements at Gruben aiwichl are

reported for discussion (see text). The value of the estimated parameter of the steady #gptianighes for the measurement at Gruben,

since the relative motion of the unstable ice mass was measured. The values of the parameters corresponding to the model with log-periodit
oscillations have not been determined for the measurements at Eiger, since no oscillations were observed (see text). The root-mean-squal
error (rmse) is also reported for the fits with and without log-periodic oscillations. The unit meders to the Gruben data set (velocity of

the unstable ice mass) and the unit m to the other data sets (displacement of unstable ice masses).

Parameter  Units Gruben Eiger vichy Monchh Monchg
61 d 12.490 120.81 13559  141.77
0 - 0523 -0.110 -1573 -2567 —2.858
63 md—%2 0545 1770  1.28e3  1.38e5 5.61e5
b5 md—1 0 0.039  0.102 0.106 0.105
rmse mdl/m 0055 0.007  0.020 0.022 0.021
6, d 12.493 108.54  106.53  108.00
6 - 0.534 —0.749 —0.685 —0.879
03 md—%2 0.554 32.50 21.31 37.90
05 md—1 0 0.098 0.101 0.102
b6 - 0.030 0.013 0.014 0.020
67 log(d) 0.090 0.505 0.510 0.537
bg - 1.095 0.469 5.116 2.722
rmse mdl/m  0.032 0.012 0.013 0.013

that is, 61> max(t;). Moreover, according to Edl, 62<1. 4 Sensitivity analysis

The following parameter transformations force the parame-
terso; to satisfy these constraints: This section attempts to determine the influence of the mea-

surement scheme on the accuracy of the prediction. The ac-
curacy of the prediction is quantified by the size of the confi-
01 = maxt;)+explgp1), 62=1-exp¢2), 63=¢3,(8)  dence interval for the time of failure.

whereg is the new parameter set ¢t 4.1 Method

The subplots on the diagonal of the Fgare the profile-  The set of the measurement times ..., #,) and the accu-

plots, the other subplots are the profile traces. The profile- racy of the measurements are fixed by the parametet set
plots show the dependence of the profilemctionz; on the

parametergy (solid line). z is the signed square root of the S = (ov, 8y, Atg, Atg), ©)

likelihood ratio test statistic for a null hypotheses abgut  \yhereoy is the standard deviation of the measuremesjts,
(AppendixB; Bates and Watts, 1988). In comparison, the js the periodicity of the measurementsfg=6,—t is the
test statistic based on the linear approximation of the regresgjme span between the end of the measurements (atg)me
sion in¢ (the estimatep is depicted by a cross) is displayed gnd the failure (at tim@1) and Arg=01—1g is the time span

using a dash-dotted line. It is linear ¢. The confidence petween the beginning of the measurements (at tifhand
interval derived fromr (AppendixB) is depicted by dashed he failure.

statlstlc test by dotted lines. Since the linear apprommaﬂonsmedlct'on to the parametes, a collection of synthetic data
are excellent, the difference can barely be seen. sets is created with Eq8)by using the values of the parame-
The off-diagonal diagrams display the profile traces (Ap- terso; identified for three analyzed break-off events (Gruben,
pendixB; Bates and Watts, 1988). They represent the correEiger, Monch; Table 1) and with different sets of measure-
lations between the different parameteysn the vicinity of ment times and different accuracies of measurements (cor-
é. In each profile subplot, the closer the two lines are to eachresponding to different values &). A synthetic Gaussian
other, the more the parameters of the subplot are correlatednoise is assumed according to the value of the parameter
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Fig. 4. Non-linear regression analysis of the Gruben data set (see text). The diagonal diagrams show thepfotsfil&he 95% confidence
interval of each parameter is indicated by dashed lines. The off-diagonal diagrams show the profile traces. The 95% confidence contours
(dotted lines) of the pair-parameters are also shown.

The periodicity of the measurements is supposed to be conmonth. The unstable ice chunks are regularly losing mass
stant with time and to equdl. In this section, we assume by fracture during the acceleration process. If the detached
no further disturbances (like daily variations &f or log- mass is significant, the acceleration of the remaining unsta-
periodic oscillations), even though they could influence theble ice part shows a discontinuity. In that case, the data are
accuracy of the forecast. The disturbartdas, therefore, not described by Eqlj anymore. Other phenomena, like ice
a constant centered normal distribution and no time correlamelting or strong variations in basal sliding may also affect
tion. the acceleration of the unstable ice m&3sa{ong and Funk
The sensitivity analysis consists in letting the parameters2005h. The time spamtg used for a prediction should cor-
S; vary independently around defined reference valfies  respond to the last time span prior to the failure during which
and analyzing the effect of these variations on the confidenc@o external disturbances interfere with the failure process.
interval of6; by using the non-linear regression analysis pre-The reference valuarg corresponds to a mean of values ob-
sented in SecB. The reference valueS* are set at served in practice.

§*=(oy=0.01m 67=0.05d Arg=3d, Az=30d). (10) For this analysis, it will be assumed that the relative mo-
The valuesy is given by the accuracy of today’s theodo- tion Y of the unstable ice mass is known. Therefore, B. (
lite laser-distometefs 53 corresponds approximately to one (with parameters); to 64) is considered. The parameter
measurement per hour. Experience has shown that a precigeansformation as given by Ecg)(is applied to the four pa-
prediction emerges only a few days before the effective colrameters);

lapse. ThereforeArE is chosen as three daysirg corre-

sponds to a time series of measurements (until failure) of one

6This accuracy is obtained by normalizing each measuremen
with reference measurements (in a similar way to the method usegl = max(i) + exp(¢y), 02 =1-exp(2),
for differential GPS measurements). 03=¢3, Oa=da. (11)
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Figure 5a shows that accurate long-term predictions are
difficult. The confidence interval of; is small only if the
time span betweert and the time of failure does not ex-
ceed a few days. For earlier end points the confidence
interval is large and its lower boundary tends toward the line
corresponding to the timee of the last measurement (the in-
clined dotted line in Figba). This suggests that a forecast
performed at an early stage of the destabilization can falsely
lead to the prediction of an impending failure. This problem
was observed bBufe and Varne$§1993 for the prediction of
earthquakes and experienced by the authors during the pre-
| diction of the failure of hanging glaciers. To estimate the
, quality of the prediction of an impending failure, the uncer-
ok : tainty on the forecast has to be determined or/and an a priori
SRy . value of the parametes and 63 has to be approximately
' known.

-2 . . For practical applicationgy is constrained by the mea-
d) surement methodirg is continuously decreasing during an
ongoing measurement process a@pgdandArg are free pa-
Fig. 5. Influence of the value oA (a) and Arg (b) on the 95% rameters. To improve t_he gccuracy of the predictioncan
confidence interval of;. The solid lines with the marks<” (the P& decreased by considering the mean of repeated measure-
dashed lines withd” and the dash-dotted lines withs”, respec- ~ Ments ordy simply decreased. However, the measurements
tively) are calculated by analyzing data sets synthesized witl8Eq. at Eiger and Mnch (Figs2c and3c), revealed that the dis-
and the value$; (see Tablel) estimated from the measurements turbanceZ is a correlated noise for time lags of less than
at Gruben (Eiger and bhchy, respectively). The horizontal dotted one day. For such a noise, measurements with a lag less
lines on both panels correspond to the estimat® off he inclined than one day do not improve the accuracy of the prediction.
dotted line in panel a) and the vertical dotted line in panel b) depiCtDuring a destabilization process, it is attempted to conduct
the timerg of the end of the measurements. measurements until failure occurs, in order to continuously
improve the prediction. However, for technical reasons, the
measurements could be interrupted prior to the failure. If
Atg is too large, the prediction is inaccurat&rg is chosen

The variations in the 95% confidence interval faras a 25 large as possi_ble, but i_s limited by the presence of external

function of S; are presented in Figs. For the three ana- disturbances which may impose the valueg{see above).

lyzed break-off events (Gruben, Eigerpiich), the results The differences in the size of the confidence intervals ob-

are qualitatively similar. The influence of andsy is here sgrved in FigS for the destabil!zation processes at Gruben,

similar to the case of a linear regression and is not presenteff/9er and Mnch are due to different values of the param-

(the size of the confidence interval is proportionabtoand ~ €t€rst2 andes (Tablel). Figure7a shows the influence of

to 5y°5). Only the influence ofvze and Arg is considered. the variation inf2 on the confidence |r_1te_:rval oh, the pa-

The size of the confidence interval decreases with decreasiniete®s and the parameter sgtremaining constant. The

Ate (Fig. 5a), since the information about the failure time Minimum of the confidence interval corresponds to approxi-

contained in the data sets becomes more accuratetesds ~ Mately62=0.6. Figure7b shows the influence of the varia-

to 1. The size of the confidence interval decreases withtion in 63 on the confidence interval ok, the parametef

increasingArg (Fig. 5b), since a longer time span of mea- 2nd the parameter sétremaining constant. A large value

surements reduces the effects of the inaccuracy of individuaP 3 IS @ssociated with an important displacement of the un-

measurements. stable ice mass during the failure process; that is, the noise
The analysis of the profileplots shows that theprofile £ Pecomes small relative to the v_ananorlleir(the size of

7 (¢1) remains approximately linear for allzg and Arg (for the confidence interval is proportional &g ~). Therefore,

the influence ofArg on z(¢1) see Fig.6). The confidence "For the Eiger data set, this is probably due to the daily varia-
'”ter}'a' Ofgb.l is therefore symmetr'c' .Th? asymmetry of the tions in the basal sliding (see above), which disappear by measuring
confidence interval fof; observed in Figd is due to the non-  he relative motion of the unstable ice mass. For thimbh data set,
linearity of the parameter transformatibiy. The analysis of  this is likely due to daily variations in the position of the theodolite.
the profile traces shows thatte and Arg strongly influence  The daily variations apparently have not been entirely removed by
the correlation betweefy and#6;.; (for Arg, see Fig.6). the correction of the theodolite position (see Appeniijx For the
The correlation between the parameters strongly influence§ruben data set, where daily variations should theoretically not ap-
the size of the confidence interval. pear (here, the relative motion of the unstable ice mass is measured),
the sparse data does not allow to determine whefhier correlated
or an uncorrelated noise.

Y]

6
4F-
2
0

interval (d)

o -
_4f

interval (d)

4.2 Results and discussion
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Fig. 6. Influence ofArg on the profile-plots and profile traces. The non-linear regression analysis is based on two data sets synthesized with
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and for b)S= (o}, fy. Arg=7.5d, Az}), where the reference values (marked Witfare given by Eq.10). The pictures show the profile-

plots with 95% confidence intervals. The parameter transformation is given by Hg. (
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larger values of3 decrease the confidence interval &af a 2
This effect explains the main differences in the size of the

confidence interval observed between the different break-off
events in Fig5. =

interval

5 Log-periodic oscillations

5.1 Background -1

Log-periodic oscillations are characteristic oscillations b N
which may occur during a critical process leading to a finite-
time singularity. They are superimposed on the motf@n)
with a frequency proportional to lgéh—r). They appear as
solutions of Voight's equation when the exponénbecomes
complex Sornette and Sammid&995. For 62#0, the real
part fipo(z, #) of the model function with oscillations takes
the form Sornette and Sammi$995

interval (d)

10

Sipo(1,8) = 64— 32 (61— 1)
[1 4 6 sin (271 logeL—1) | g )] (12)  Fig. 7. Influence of the value af, (a) andés (b) on the 95% con-
log(67) 8)]- fidence interval of;. The solid lines marked withX” (the dashed
) ) . ) o line with “o” and the dash-dotted line with4”, respectively) are
whereds is the relative amplitud 67 is the logarithmic pe-  cajculated by analyzing data sets synthesized with the val(fer
riodicity anddsg is the phase shift of the log-periodic oscil- panel a), the valué, (for panel b) estimated from the measure-
lation. An acceleration with oscillations, which is superim- ments at Gruben (Eiger anddvichy, respectively), the values of

posed on a steady motion takes the form the parameter se8* (Eq. 10) and the Eq.3). The vertical solid
lines (dashed and dash-dotted lines, respectively) correspond to the
flgo(t, 0) =051+ 64 — g—g 6L —0)%2 - valueds (for panel a), to the valués (for panel b) estimated from
[1 + 66 sin (27r log(61—1) 1o )] (13) the measurements at Gruben (Eiger ariihihy, respectively). The
log(67) 8)1- horizontal dotted lines on both panels correspond to the estimate of

- S 01. The vertical dotted line in panel a) marks the singularity of
Log-periodic oscillations have been observed for numerousElq_ @) atby = 0. P ) g y

finite-time singularities: fracture of structures, earthquakes,

rock bursts, financial crashes (see the reviewlbu and

Sornette 2002 and were suggested lyithi (2003 in the  three points, the fit of the log-periodic oscillations is mostly
case of failure of hanging glaciers. Several attempts havé, accordance with the smooth curve through the residuals
been made to explain log-periodic oscillatiomde and Sor- g, | the case of Gruben, the existence of log-periodic os-
nette(2003 relatgd Iog—penocﬁc behawpr with systems »Fhat cillations is probable but cannot be verified due to the sparse
contain a relaxation mechanism reducing the damage in thgata (Fig.1c). For the measurements at Eiger, no oscillations
system. However, they did not obtain a response from the;oyid be observed (Figc). This, however, does not mean
system corresponding to E4.3). Sahimi and Arbab{1999  {hat they do not exist; they might be hidden by the daily vari-
related log-periodic behavior to dynamic crack interactionstions in the glacier velocity.

at different scales. The physical meaningdpfis not fully The amplitude of the log-periodic oscillations equals
revealed by this approachifthi, 2003, either.

03
5.2 Observations o (61— 1) 6. (14)
The measurements carried out at thérddh hanging glacier The comparison of the oscillations observed for the three
show log-periodic oscillations: Figurc presents the os- points at Monch (Fig.8c) reveals the same amplitude of os-
cillations isolated from the global acceleration (residualscillation even thougl$, andés do not have the same values
Ri=Y?- 3, 0) for a fitted function f2 of the form of for the different pointd. Thus, the parametég compensates
Eqg. 7) for the material point 1 (Fig3a). As expected, the for the different values of> andés. 6 is therefore not con-
other two points considered (points 2 and 3; FBg) also  stant (Tablel). Figure8c also shows that the oscillations are
present log-periodic oscillations (Fig8a and b). For all in phase, at least during the period of the measurements. The

8Although g is a constant value, the amplitude of the log- 9The global displacement, given by(63/65) (61—1)%2, has not
periodic oscillations varies with time, since the term multiplying the same magnitude for points 1, 2 and 3. The global displace-
the square bracket varies with time.6lf<0, the amplitude of the  ment from the beginning to the end of the measurements amounts
oscillations increases until failure;d >0, it decreases. to 3.2 [m], 2.95 [m] and 2.4 [m] for point 1, 2 and 3, respectively.
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Fig. 9. Influence of the variation oAz on the predicted time of
failure 9, estimated by fitting the ®inch; data set using the model

. ) . . . . . . without log-periodic oscillations (Eq) (dash-dotted line) and with
110 100 90 80 70 60 50 40 30 20 log-periodic oscillations (EdL3) (solid line). They-label “variation

time before failure (d) of prediction” means the difference betwe@nestimated by vary-

ing Arg andé; estimated with Eq.13) and the complete data set
(minimum Azg). The two dotted lines show the 95% confidence in-
terval of the prediction using the model with oscillations. The inter-
val is estimated using an autoregressive moving-average (ARMA)
model (e.g.Brockwell and Davis2002 which assumes a lagged
dependence of the residual terms. The dashed line depicts the time
tg of the end of the measurements. The fits are performed with an
imposed value ofis.

[g)
=)

residuals (m)

110 100 90 80 70 60 50 40 30 20
time before failure (d)
Fig. 8. Log-periodic oscillations observed atdvich. They corre- to Azg when the log-periodic oscillations are taken Into ac-
spond to the residualg®— f2(t, #) associated witt{a) point 2 in count (see also Tablg. The dependence 6i on Arg in the
Fig. 3a and(b) point 3 in Fig.3a. The solid lines depict the fit former case results from the fact that the last measurements
of the log-periodic oscillations. The dashed lines show the smoottPf the time series have the largest influence on the prediction
curve of the residual¥@— f2(s, 9). (c) Superposition of the three  (due to the non-linearity of the function) and that the value of
observed oscillations. The solid line refers t@hth; the dashed these last measurements varies around the global trend (due
line to Moncty; the dash-dotted line to bhchs. The values of the  to the presence of log-periodic oscillations) whes varies.
oscillations parameters are given in Table A positive deviation of the last measurements (Rgfrom
the global trend leads to an underestimation of the time span
until failure, whereas a negative deviation leads to an overes-
estimates of the logarithmic wavelengdthis similar for the  {jmation.
three points, in contrast to the phase shif(Tablel). The  Figure 9 also illustrates that a forecast performed at an
variations of the phase shift compensate for the difference inearly stage of the destabilization cannot exclude an impend-
the estimated values of the failure tifereported in Tabld ing failure, since, with increasing g, the confidence inter-
(lower part of the table). val tends toward the line corresponding to the time of the
A (H, g)-analysis can be alternatively used to identify the prediction (dashed line). If the log-periodic oscillations are
parameters, 67, 0g of the log-periodic oscillationsZhou ot considered in the function used for the prediction, the
and Sornette2002. In this method, the parametetsand  forecast of an impending failure could be erroneous, since
64 of the general trend disappear and thus do not need to bghe variations observed in the prediction (dash-dotted line)

identified. The disadvantage of this method is that it requirescan induce an underestimation of the time span until failure.
the estimation of a derivative (thé( ¢)-derivative ofY),

which magnifies the noise of the data.

6 Conclusions
5.3 Predictions

Accurate predictions of the failure of hanging glaciers are
A prediction from a model with no log-periodic oscillations only possible when the time between the end of the measure-
provides inaccurate results. Figi@ashows, for the Ndbnch ments and the effective time of failure becomes small (order
data set, thaf; strongly varies withAzg if the fitting func- of magnitude of one week). An early monitoring of the fail-
tion does not include log-periodic oscillations (this effect is ure process increases the accuracy of the prediction, as long
reduced for smallg). In contrastd; is much less sensitive as no external disturbances interfere with the failure process
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during the measurement period. The value of the parametergere installed to reconstruct the position of the theodolite.
0> andds describing the acceleration process strongly influ- This reconstruction is an overdetermined inverse problem.
ences the accuracy of the forecast, since the model to be fitted The forward problem, which couples the position
is non-linear. If the values of these parameters cannot be esti-Pz,, Pt,, Pt;) and the horizontal rotatiog of the theodo-
mated in advance, an a priori approximation of the accuracylite to the distance;, the cosine cos; of the vertical angle,

of the prediction is not possible; it only emerges during thethe cosine cos; of the horizontal angle and the sine sjrof
prediction process. the horizontal angle obtained by the measurement of a refer-

Log-periodic oscillations were clearly observed in one of €nce point (i = 1, ..., m, with m the number of reference
the three break-off events analyzed. For this event, the ampoints, heren = 4) in a spherical coordinates system, is
plitude, frequency and phase of the oscillations appear t@iven by
be spatially homogeneous over the entire unstable ice mass

(P Pt N2 (Pi —Pr 2 Pi P2
whereas the shape of the global acceleration is spatiallyinho-dl —(gfljpt_P’x) +(Piy—Pty)"+(Pi:—Pt;)

mogeneous (this behavior has also been observed recently dfPSVi = —7—

a hanging glacier in the north face of Weisshorn). This sug-cosh; = ¢; ((p,'y — Pty) + (Piy — Ptx)i%) ,

gests that the oscillations may result from a global process . ) i sing

acting on the entire unstable ice mass. It has been shown sup?n%i = ¢1 ((sz — Pt = (Piy — P’y)m) :

sequently that the influence of the oscillations on the forecas\tNhere(Pi

is significant. This implies, if oscillations are observed in a; and v

data set, that they must be considered in order to achieve an )
possible to observe disturbances that are intrin- 12

sically related to the destabilization process, like the jerky SNV = (1—cosw;) ™.

motion observed byiaeberli(1979, since important exter-  The referentialx, y, z) has to be chosen such that ¢gos 0.

nal disturbances hid this behavior, and the accuracy and frethe linearized forward system then reads

quency of the measurements were not adequate. Further in-

)1/2

(A1)

Piy, Pi;) is the position of the reference point

vestigations should be carried out to determine the properties/ d; — dl.(o) Pty — Ptﬁo)

of these intrinsic disturbances. Information for maximizing | cosv; — cos®v; | _ co | Pty — Ptﬁo) (A3)
the accuracy of the prediction and minimizing the number of | cosh; — cosQh; | — pr, — pPtO |’
necessary measurements could be gained through this analy sin; — sin© ; b - ¢(0’)

sis.

The prediction of the effective time of failure is based on whoer_e the supers_cri[ﬁ@ denotes the linearization point, and
the assumption that the failure time paraméierorresponds G is the Jacobian matrix (aéx 4 matrix) defined as

to the effective time of the break-off; that is, the failure oc- GO= Gl o .0 .0 (A4)
curs at infinite velocity. This assumption is not precise for P, P, Pr% Oy

ductile materials (e.g. ice), since the fracture is usually ob-yiin

served to occur at an earlier stage of the acceleration process, od od od

i.e. at a finite velocity (e.gLemaitre 1996. This behavior a1, 9P, P O

can be related to the inhomogeneity of the crack Reay{ D00sy; 2005w 3%0Sw g

long and Funk2005a Appendix A). Recent observations C = | acosh; dcosh dcosh; dcosh; |- (A5)
performed on a hanging glacier at the Weisshorn north face damhs oamh oenh oeon

also suggest that the failure occurs at a finite velocity. Fur- 9Pty 9Pty 3Pt; 3¢

ther investigations need to be carried out in order to improveThe systemA3) is inverted in the sense of the least-squares
the physical understanding of the failure processes so that agpproach The inverse system reads

appropriate model of fracture can be obtained.

pr{" Pt
P | P
Appendix A Reconstruction of the theodolite position Pt§”+l) Pt§")
from measurements P+ o™
. . . . (n+1) (n)
The measurements carried out at théridh hanging glaciers d; —d;
were affected by the variation in the position of the theodo- | , ) | cos"*P v; — cos™ v (A6)
lite. The theodolite was installed on the terrace of a building cos™V n; — cos™ h;
(Sphinx building at Jungfraujoch) which is subject to small sin®+D p; — sin®™ p;

oscillations due to thermal constraints in the structure of the _ _
building and probably to the motion of the foundations. Four The superscripté ™2, ™ denote the solution at the+1)th
reference points located on rock spurs around the theodolitéderation andnth iteration, respectively. d,.("), cos™ v;,
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cos™ h; and sif” h; are evaluated with EqAQL) at P+,
P, Pt!” andg™, and the 4&4m matrix A® is given by

A — (G(n)TG(n))*lG(H)T’ (A7)
where the Jacobian matr&® reads
G" = G| (A8)

(P, P, P )’

The system (A6) is iteratively solved until the relative differ-
ence between the solution of the+ 1)th andnth iterations
becomes less than 18
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