462 research outputs found

    Plasma deposited diamondlike carbon on GaAs and InP

    Get PDF
    The properties of diamond like carbon films grown by RF flow discharge 30 kHz plasma using methane are reported. The Cls XPS line shape of films showed localized hybrid carbon bonds as low as 40 to as high as 95 percent. Infrared spectroscopy and N(15) nuclear reaction profiling data indicated 35 to 42 percent hydrogen, depending inversely on deposition temperature. The deposition rate of films on Si falls off exponentially with substrate temperature, and nucleation does not occur above 200 C on GaAs and InP. Optical data of the films showed bandgap values of 2.0 to 2.4 eV increasing monotonically with CH4 flow rate

    Optical properties of hydrogenated amorphous carbon films grown from methane plasma

    Get PDF
    A 30 kHz ac glow discharge formed from methane gas was used to grow carbon films on InP substrates. Both the growth rate, and the realitive Ar ion sputtering rate at 3 keV varied monotonically with deposition power. Results from the N-15 nuclear reaction profile experiments indicated a slight drop in the hydrogen concentration as more energy was dissipated in the ac discharge. Values for the index of refraction and extinction coefficient ranged from 1.721 to 1.910 and 0 to -0.188, respectively. Optical bandgaps as high as 2.34 eV were determined

    A dynamical classification of the range of pair interactions

    Full text link
    We formalize a classification of pair interactions based on the convergence properties of the {\it forces} acting on particles as a function of system size. We do so by considering the behavior of the probability distribution function (PDF) P(F) of the force field F in a particle distribution in the limit that the size of the system is taken to infinity at constant particle density, i.e., in the "usual" thermodynamic limit. For a pair interaction potential V(r) with V(r) \rightarrow \infty) \sim 1/r^a defining a {\it bounded} pair force, we show that P(F) converges continuously to a well-defined and rapidly decreasing PDF if and only if the {\it pair force} is absolutely integrable, i.e., for a > d-1, where d is the spatial dimension. We refer to this case as {\it dynamically short-range}, because the dominant contribution to the force on a typical particle in this limit arises from particles in a finite neighborhood around it. For the {\it dynamically long-range} case, i.e., a \leq d-1, on the other hand, the dominant contribution to the force comes from the mean field due to the bulk, which becomes undefined in this limit. We discuss also how, for a \leq d-1 (and notably, for the case of gravity, a=d-2) P(F) may, in some cases, be defined in a weaker sense. This involves a regularization of the force summation which is generalization of the procedure employed to define gravitational forces in an infinite static homogeneous universe. We explain that the relevant classification in this context is, however, that which divides pair forces with a > d-2 (or a < d-2), for which the PDF of the {\it difference in forces} is defined (or not defined) in the infinite system limit, without any regularization. In the former case dynamics can, as for the (marginal) case of gravity, be defined consistently in an infinite uniform system.Comment: 12 pages, 1 figure; significantly shortened and focussed, additional references, version to appear in J. Stat. Phy

    Probability distributions consistent with a mixed state

    Get PDF
    A density matrix ρ\rho may be represented in many different ways as a mixture of pure states, \rho = \sum_i p_i |\psi_i\ra \la \psi_i|. This paper characterizes the class of probability distributions (pi)(p_i) that may appear in such a decomposition, for a fixed density matrix ρ\rho. Several illustrative applications of this result to quantum mechanics and quantum information theory are given.Comment: 6 pages, submitted to Physical Review

    Characterizing mixing and measurement in quantum mechanics

    Get PDF
    What fundamental constraints characterize the relationship between a mixture ρ=ipiρi\rho = \sum_i p_i \rho_i of quantum states, the states ρi\rho_i being mixed, and the probabilities pip_i? What fundamental constraints characterize the relationship between prior and posterior states in a quantum measurement? In this paper we show that there are many surprisingly strong constraints on these mixing and measurement processes that can be expressed simply in terms of the eigenvalues of the quantum states involved. These constraints capture in a succinct fashion what it means to say that a quantum measurement acquires information about the system being measured, and considerably simplify the proofs of many results about entanglement transformation.Comment: 12 page

    Classical Helium Atom with Radiation Reaction

    Get PDF
    We study a classical model of Helium atom in which, in addition to the Coulomb forces, the radiation reaction forces are taken into account. This modification brings in the model a new qualitative feature of a global character. Indeed, as pointed out by Dirac, in any model of classical electrodynamics of point particles involving radiation reaction one has to eliminate, from the a priori conceivable solutions of the problem, those corresponding to the emission of an infinite amount of energy. We show that the Dirac prescription solves a problem of inconsistency plaguing all available models which neglect radiation reaction, namely, the fact that in all such models most initial data lead to a spontaneous breakdown of the atom. A further modification is that the system thus acquires a peculiar form of dissipation. In particular, this makes attractive an invariant manifold of special physical interest, the zero--dipole manifold, that corresponds to motions in which no energy is radiated away (in the dipole approximation). We finally study numerically the invariant measure naturally induced by the time--evolution on such a manifold, and this corresponds to studying the formation process of the atom. Indications are given that such a measure may be singular with respect to that of Lebesgue.Comment: 16 pages, 3 figure

    Fluctuations in Stationary non Equilibrium States

    Full text link
    In this paper we formulate a dynamical fluctuation theory for stationary non equilibrium states (SNS) which covers situations in a nonlinear hydrodynamic regime and is verified explicitly in stochastic models of interacting particles. In our theory a crucial role is played by the time reversed dynamics. Our results include the modification of the Onsager-Machlup theory in the SNS, a general Hamilton-Jacobi equation for the macroscopic entropy and a non equilibrium, non linear fluctuation dissipation relation valid for a wide class of systems

    Global validity of the Master kinetic equation for hard-sphere systems

    Get PDF
    Following the recent establishment of an exact kinetic theory realized by the Master kinetic equation which describes the statistical behavior of the Boltzmann-Sinai Classical Dynamical System (CDS), in this paper the problem is posed of the construction of the related global existence and regularity theorems. For this purpose, based on the global prescription of the same CDS for arbitrary single- and multiplecollision events, first global existence is extablished for the N-body Liouville equation which is written in Lagrangian differential and integral forms. This permits to reach the proof of global existence both of generic N-body probability density functions (PDF) as well as of particular solutions which maximize the statistical Boltzmann-Shannon entropy and are factorized in terms of the corresponding 1-body PDF. The latter PDF is shown to be uniquely defined and to satisfy the Master kinetic equation globally in the extended 1-body phase space. Implications concerning the global validity of the asymptotic Boltzmann equation and Boltzmann H-theorem are discussed
    corecore