In this paper we formulate a dynamical fluctuation theory for stationary non
equilibrium states (SNS) which covers situations in a nonlinear hydrodynamic
regime and is verified explicitly in stochastic models of interacting
particles. In our theory a crucial role is played by the time reversed
dynamics. Our results include the modification of the Onsager-Machlup theory in
the SNS, a general Hamilton-Jacobi equation for the macroscopic entropy and a
non equilibrium, non linear fluctuation dissipation relation valid for a wide
class of systems