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We study a classical model of Helium atom in which, in addition to the Coulomb forces, the radiation reaction
forces are taken into account. This modification brings in the model a new qualitative feature of a global
character. Indeed, as pointed out by Dirac, in any model of classical electrodynamics of point particles
involving radiation reaction one has to eliminate, from the a priori conceivable solutions of the problem, those
corresponding to the emission of an infinite amount of energy. We show that the Dirac prescription solves a
problem of inconsistency plaguing all available models which neglect radiation reaction, namely, the fact that
in all such models most initial data lead to a spontaneous breakdown of the atom. A further modification is
that the system thus acquires a peculiar form of dissipation. In particular, this makes attractive an invariant
manifold of special physical interest, the zero–dipole manifold, that corresponds to motions in which no energy
is radiated away (in the dipole approximation). We finally study numerically the invariant measure naturally
induced by the time–evolution on such a manifold, and this corresponds to studying the formation process of
the atom. Indications are given that such a measure may be singular with respect to that of Lebesgue.
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At variance with the existing works on the dy-
namical properties of classical atomic systems
(see for example Refs. 1–8), in this paper we take
into account, for the case of the Helium atom, the
effects on the dynamics due to the radiation emit-
ted by the electrons during their motion. This
introduces a qualitative change in the dynamics,
with respect to the purely Coulomb model, be-
cause the model now corresponds to a non con-
servative dynamical system. This leads to the
appearing of an “attractive” manifold of stable
periodics orbits, where attractive is to be under-
stood in a proper sense which will be explained
below. The aim of this paper is to study the prop-
erties of such a manifold, through analytical and
numerical methods.

I. INTRODUCTION

The studies on the dynamical properties of classical
atomic models, in which only Coulomb forces are taken
into account, have a long history, going back to Nichol-
son, Bohr and Langmuir (see Refs. 1–3). The main result
found in such old works (see the work 1 of Nicholson for
the case of Beryllium, at those times called Nebulium) is
that there exist periodic orbits having “normal mode fre-
quencies” whose ratios are near to those of the observed
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spectral lines. Among the recent works on this subject a
particularly relevant place is taken by the papers of De
Luca7,8 on the Helium atom. This author went beyond
the Coulomb approximation, taking retardation of the
electromagnetic forces into account. This was obtained
through a perturbation scheme which, truncated in a
suitable way, leads to the conservative Darwin lagrangian
that one finds illustrated in common textbooks10,11. In
such a way the scale invariance of the purely Coulomb
model was eliminated, and the result of Nicholson could
be improved, showing that for the Helium atom there ex-
ist periodic orbits leading to dynamical frequencies which
themselves, and not only their ratios, have a rather good
agreement with the empirical spectral frequencies.

On the other hand, it was known since the time of
Nicholson, and confirmed for example by Poirier4, that
all such periodic orbits are unstable. More recently Ya-
mamoto and Kaneko5,6 showed, for the case of Helium,
that the instability of the periodic orbits actually corre-
sponds to a much more general and acute form of insta-
bility. Indeed they found that the vast majority of initial
data with negative energy lead to the autoionization of
the atom, namely, to motions in which one of the elec-
trons is expelled. One can see that this occurs also for
a generic atom, and even in a stronger way, inasmuch as
one meets with motions in which all electrons but one are
expelled. So, the whole classical theory of atomic models
seems to be plagued by a general failure, for which no
remedy is known.

One usually takes the pragmatic attitude of just for-
getting the autoionizing motions. One should however
indicate an internal dynamical justification of a more
general character for such a selection of the initial data.
Moreover, one might hope that such a general prescrip-
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tion would also automatically explain why the system
chooses to fall (through some peculiar kind of dissipation)
on the physically interesting periodic orbits, for which an
agreement betweeen dynamical and spectral frequencies
is found. Obviously, satisfying the latter point requires
to abandon a purely lagrangian, and thus conservative,
approach to the problem, by taking electromagnetic ra-
diation into account.

This is precisely what we do in the present paper,
where we take into account the emission of radiation due
to the accelerations of the electrons in the simplest pos-
sible way, namely, by adding to the Coulomb forces the
radiation reaction ones. So, in a sense our model is com-
plementary to that of De Luca, who introduces only the
conservative terms produced by the Darwin approxima-
tion scheme, and neglects dissipation. We leave for future
work the study of a model which takes both features into
account.

It will be shown here that the modification of the
Coulomb model that takes radiation into account, in the
first place gives a model in which the autoionization prob-
lem no more arises. This is due to the fact, first pointed
out by Dirac in the general context of classical electrody-
namics of point particles12, that most initial data in the
phase space suited to the model lead to motions in which
an infinite amount of energy is emitted, so that the defini-
tion of the model has to be complemented by the explicit
prescription that such initial data have to be discarded.
The remaining initial data (constituting a set that will be
called here the Dirac or physical manifold) will be shown
to lead to motions in which the phenomenon of autoion-
ization no more occurs. So, the elimination of the initial
points in phase space leading to autoionizing solutions
appears no more as a special trick to be strangely intro-
duced ad hoc, but rather as a particular case of a com-
pletely general prescription that, following Dirac, has al-
ways to be introduced when dealing with classical models
of matter–radiation interaction involving point particles.

Then we study the dynamics on the Dirac physical
manifold, in which the Dirac precription turns out to
introduce a dissipation af a peculiar type. We show
that the Dirac prscription allows one to find (and in a
easy way) all periodic orbits, proving furthermore that
they form in phase space a manifold. This is just the
zero–dipole manifold, which is constituted of phase–space
points leading to motions that do not radiate energy away
in the dipole approximation. A major aim of this paper
is to study such a manifold. We first show that it is an
attractor, for initial states with negative energy. Then
we study, by numerical methods, the invariant measure
naturally induced on it by the time–flow. This amounts
to studying the formation process of the Helium atom,
namely, motions having initial data with the two elec-
trons coming from infinity that are then captured by
the nucleus, and finally fall on the zero–dipole manifold,
where emission of energy comes to an end.

From the point of view of the theory of dynamical sys-
tems, an interesting result we find is that, while the at-

tractor (the zero–dipole manifold) is really simple as a
manifold (being just a portion of a linear subspace in the
system’s phase space), it is the invariant measure induced
on it by the time evolution that is very peculiar. Indeed
it is presumably singular with respect to the restriction
of the Lebesgue measure, possibly having a fractal struc-
ture.

In Section 2 the model is introduced, and a prelimi-
nary analytical discussion of its properties is given. In
Section 3 the numerical method for obtaining the invari-
ant measure is described, and the numerical results are
presented. The conclusions follow.

II. THE MODEL

A. The radiation reaction for a single point–charge

Let us recall that, in the case of a single point–charge,
the emission of radiation is taken into account without
introducing the infinitely many degrees of freedom of the
electromagnetic field, through the expedient of adding
in the equation of motion for the particle an “effective
force”. This force, which is traditionally called radiation
reaction force and denoted by Krad, is given by

Krad =
2

3

e2

c3
˙̈x , (1)

where e is the charge of the particle, c the speed of light,
and x the position vector of the particle. The procedure
which leads to such a force goes back to Planck, Lorentz
and Abraham, and was given a final form in the work of
Dirac12 of the year 1938, in which an extension to the
relativistic case was performed in an extremely elegant
way. In its most elementary form, which is illustrated
in standard textbooks (see Refs. 10, 11, 14, and 15), the
procedure amounts to requiring that the effective force
Krad produces an energy loss consistent with the power
radiated away by an accelerating particle according to
the Larmor formula, namely, (2/3) (e2/c3) |ẍ|2. As is well
known, this force can also be interpreted as being pro-
duced by the regular part of the self–field of the particle,
the divergent part having been reabsorbed through mass
renormalization.

We illustrate now, in the simple case of the free particle
in the nonrelativistic approximation, how the “runaway”
solutions then show up. In terms of the particle’s acceler-
ation a = ẍ, the equation of motion for the free particle
takes the form

εȧ = a ,

with

ε =
2

3

e2

mc3
(2)

(m being the particle’s mass), with solutions a(t) =
a0 exp(t/ε) depending parametrically on the initial ac-
celeration a0. So, for generic initial data the solution
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exponentially explodes, i.e., presents runaway character,
a fact which makes no sense for a free particle. Thus
Dirac12 introduces the explicit prescription that, for the
case of a free particle, only the solutions with vanish-
ing initial acceleration, a0 = 0, be retained. Now, the
phase space P mathematically suited to the considered
third–order equation of motion, is the vector space R9,
a point of which is defined by the coordinates (x,v,a) of
position, velocity and acceleration. In such an ambient
phase space P, the physically meaningful phase space is
thus the subset characterized by motions of nonrunaway
type. This we will call “Dirac or physical manifold”, and
coincides with the hyperplane a = 0.

More in general, in the presence of an external force
vanishing at infinity, one should assume that for scatter-
ing states, in which the particle eventually behaves as a
free one, the physical or nonrunaway manifold be defined
by the asymptotic condition

ẍ(t)→ 0 for t→ +∞ . (3)

Prescriptions of such a type may be formulated in a
different way, which captures another side of the problem.
One makes reference to the total energy emitted by the
particle, namely, the quantity

∆E = mε

∫ +∞

0

|ẍ(t)|2 dt , (4)

and a physically natural requirement is then to restrict
oneself to motions for which the amount of energy ra-
diated away during the whole motion is finite, i.e., one
has ∆E <∞. For smooth motions, such as those we are
considering which are solutions of an ordinary differen-
tial equation, the latter condition implies the asymptotic
condition (3). Thus condition (3) turns out to be jus-
tified also for motions not having a scattering character
(as the bound states), for which the argument referring
to the eventual free–type motion of the particle does not
apply.

The asymptotic condition (3) will be referred to as the
Dirac prescription. Due to the global character (with
respect to time) of the latter, the dynamics on the Dirac
physical manifold thus acquires quite peculiar fetures16;
for example, it can be folded17,18.

We will give arguments indicating that, for the Helium
atom model with radiation reaction, the analog of the
Dirac prescription automatically eliminates the autoion-
ization problem, and thus overcomes the main inconsis-
tency of all classical models which neglect radiation.

B. Definition of the model

In the case of several particles one can operate as for
just one particle, by introducing a suitable radiation re-
action force acting on each particle, in such a way that
the power dissipated by the whole system be equal to
that emitted in the dipole approximation (see 10 sec.

9.2). In the case of two particles the radiated power is
mε(ẍ1 + ẍ2)2, where x1, x2 are the position vectors of
the particles (here, the position vectors of the two elec-
trons with respect to the nucleus, assumed to be fixed
at the origin of an inertial frame). This gives for the ef-
fective forces Krad

1 and Krad
2 acting on each electron the

same expression, namely, mε( ˙̈x1 + ˙̈x2). Thus the model
is described by the system of equations

ẍ1 = − 2e2

m

x1

r31
+
e2

m

x1 − x2

r312
+ ε ( ˙̈x1 + ˙̈x2)

ẍ2 = − 2e2

m

x2

r32
+
e2

m

x2 − x1

r312
+ ε ( ˙̈x2 + ˙̈x1) (5)

(in the Gauss system, with ε given by (2)).
One obtains the same expression for the radiative force

acting on each particle, also if one considers it as due
to the sum of the (regular part of the) self–field, and
of the retarded field produced by the other charge, ex-
panded with respect to the distance. One can check this
fact through computations which are completely stan-
dard, though a little cumbersome and not particularly
illuminating. So we omit them. The only point worth of
mention is that the expansion in the distance should be
performed up to third order and not just to the second
one as one finds in the textbooks; this is indeed the point
which is responsible for the appearing of the relevant non-
conservative term proportional to the third derivative of
the center of mass.

System (5), when expressed in terms of the center of
mass xcm and of the relative position vector r, defined
by

xcm = (x1 + x2)/2 , r = x2 − x1 ,

takes the form

r̈ =
2e2

m

r

r3
+

2e2

m

( xcm − r/2∣∣xcm − r/2
∣∣3 − xcm + r/2∣∣xcm + r/2

∣∣3)
2ε ˙̈xcm = ẍcm +

e2

m

( xcm − r/2∣∣xcm − r/2
∣∣3 +

xcm + r/2∣∣xcm + r/2
∣∣3) ,

(6)

in which there appears only one third–derivative term,
˙̈xcm, which enters just the equation for the center of mass.
In conclusion, when radiation reaction is taken into ac-
count, the equations of motion in the variables xcm, r
are exactly the same as for the purely Coulomb model,
with the only addition of the radiation reaction force in
the equation for the center of mass.

So the ambient phase space P suited for the motions of
the two point electrons is the vector space R15, a point
of which is defined by the coordinates

xcm , ẋcm , ẍcm , r , ṙ ,

Now, the radiation reaction term acts in the equation for
the center of mass just as in the case of a single particle.
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Thus, in the spirit of the classical work of Dirac, we will
define our model by complementing the system of equa-
tions (5) or (6) through the Dirac prescription: in the
ambient phase space P = R15 the only admitted points
are those leading to motions that satisfy the asymptotic
condition

ẍcm(t)→ 0 for t→ +∞ . (7)

As in the case of the single particle, this corresponds to
the physical condition that the amount of energy radiated
away during the whole motion be finite. This prescrip-
tion implicitly introduces a selection among the allowed
initial data, and the subset of the allowed points in the
ambient phase space P will be called the Dirac or physical
manifold. We will show that this restriction eliminates
the autoionization problem, and makes the zero–dipole
manifold become attractive for initial data of negative
energy.

C. Simple analytical deductions

One immediately sees that there exists a particular
invariant submanifold of the Dirac physical manifold,
which will play a fundamental role in this work. It is the
zero–dipole manifold, defined by the condition xcm(t) = 0
for all times, which corresponds to the hyperplane

xcm = 0 , ẋcm = 0 , ẍcm = 0 . (8)

Invariance is immediately checked. One also easily checks
that such a manifold is composed of orbits which are
solutions of the purely Coulomb model in the unknown
r(t) with a suitable charge, and are thus periodic in the
case of negative energy.

We will make use of an energy theorem. This is im-
mediately established by multiplying, as usual, equations
(5) by ẋ1 and ẋ2 respectively, adding them and using the
Leibniz formula for the product ˙̈xcmẋcm. This gives

d

dt
(T + V − 4mε ẍcm · ẋcm) = −4mε |ẍcm|2 ≤ 0 ,

where T is the kinetic energy, V the potential energy
corresponding to the Coulomb forces, and 4mε ẍcm · ẋcm

the so–called Schott term. So, the quantity

E = T + V − 4mεẍcm · ẋcm

may be simply called the energy of the system, (while
the quantity E = T + V may be called the mechanical
energy), and E turns out to be a non increasing function
of time. Obviously the two energies coincide, E = E, on
the zero–dipole manifold.

From the energy theorem one immediately gets that
periodic orbits necessarily belong to the zero–dipole man-
ifold. Indeed, just integrating the energy equation over a
period, a periodic orbit is seen to necessarily have vanish-
ing center of mass acceleration, and consequently is seen

to belong to the zero–dipole manifold. In addition, the
portion of the zero–dipole manifold with negative energy
is wholly foliated by periodic orbits which, as already
mentioned, are just the periodic orbits for the two–body
Coulomb problem with a suitable charge.

Using the energy theorem one can also make more pre-
cise the notion of an autoionizing motion. We recall that
the instability problem that plagues the purely Coulomb
model is that the vast majority of initial states with neg-
ative energy lead to motions in which one of the electrons
is expelled to infinity, so that the atom is unstable. We
show instead that the analogous situation does not oc-
cur in the model with radiation reaction, for initial states
with negative energy.

Indeed, if autoionization occurs with the two electrons
both escaping to infinity, then both the potential and
the Schott term finally vanish, so that the energy finally
becomes positive, i.e. it has increased, against the en-
ergy theorem. If instead autoionization occurs with only
one electron, say the first one, escaping to infinity (in a
nonrunaway fashion), then the equation of motion for x2

reduces to

ẍ2 = − 2e2

m

x2

r32
+ ε ˙̈x2 , (9)

which is the equation for just one electron with radiation
reaction, in the external field of the nucleus. On the
other hand, as shown in papers 19 and 20, starting from
initial data with negative energy, equation (9) admits
only runaway solutions.

Furthermore, the zero–dipole manifold is an attractor
for initial states with negative energy, as a consequence
of the asymptotic Dirac condition (7). This can be seen
by rewriting the equation for the center of mass in the
integro–differential form

ẍcm(t) = − 1

e−t/2ε

∫ +∞

t

e−s/2ε f
(
xcm(s), r(s)

)
d s

where f is the function defined by the last two terms at
the right hand side of the second equation in (6). So, from
the de L’Hopital rule the property f → 0 for t → +∞
follows. Finally, the result xcm(t) → 0 for t → +∞ fol-
lows from the form of the function f , using the previously
proven fact that for negative energies the motion of the
center of mass is bounded.

In conclusion, following the Dirac prescriprion of re-
stricting the ambient phase space to the Dirac physical
manifold, on the one hand the difficulty of the generic au-
toionization is eliminated, and on the other hand our dy-
namical system presents a dissipative character, because
all initial states with negative energy are definitively
attracted to the invariant zero–dipole manifold, corre-
sponding to motions that do not radiate energy away (in
the dipole approximation). However, in the next section
we will show that the electrodynamical dissipation due to
radiation reaction has a peculiar character with respect
to that of the familiar dissipative systems such as the
Lorenz one.
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III. THE NATURAL INVARIANT MEASURE ON THE
ATTRACTOR: NUMERICAL RESULTS

It is simple to check that the Lebesgue measure in
phase space, restricted to the zero–dipole manifold, is
invariant under the flow. However, other, actually in-
finitely many, invariant measures exist, this being a
general property of any continuous group Φt of diffeo-
morfisms on a smooth manifold M. Indeed, following
Krylov and Bogolyubov21, for any given measure µ0 with
µ0(M) <∞, a corresponding invariant measure µ can be
constructed by defining

µ(B) = lim
t→+∞

1

t

∫ t

0

µ0(Φ−sB) ds . (10)

The intuitive meaning of the measure µ is the fraction
of the initial points of phase space (chosen according the
given probability µ0) which fall on any given set B. So, if
we choose for µ0 the restriction of the Lebesgue measure
to the Dirac physical manifold, and take initial data with
the two electrons coming freely from infinity, then from
the physical point of view the measure µ will describe the
state of the atom at the end of the formation process.

Our aim is now to find a numerical scheme for con-
structing the measure µ. For the sake of simplicity, in
the implementation we will restrict ourselves to the case
of planar motions. So, the phase space corresponding to
equations (6) has dimension 10, and the Dirac physical
manifold has at most dimension 8, while the zero–dipole
manifold has dimension 4.

It goes without saying that the motions are to be ob-
tained by integrating the system backward in time. In-
deed the Dirac physical manifold is defined only implic-
itly, through the asymptotic condition (7). Thus one
concretely has to operate in the ambient phase space P,
in which the Dirac manifold has vanishing measure. Be-
sides, even if one were able to take initial data on the
Dirac manifold, by integrating forward in time numeri-
cal errors would make the orbits escape from it, and in
a runaway fashion. Such problems are overcome by the
standard procedure of integrating the equations of mo-
tion backward in time. In such a way one is guaranteed
to approach (in a time of the order 2ε) the Dirac man-
ifold. By the way, the integration beackward in time is
just the one needed in order to compute the asymptotic
measure µ according to the definition (10).

From the numerical point of view, the only practical
way in which a measure can be described, is to compute
its density ρ(x). Here we denote by x the coordinates
of a point in the ambient phase space P. So we imple-
mented the following algorithm. Taking x on the zero–
dipole manifold as initial datum, we follow, backward in
time, the time evolution of a small hypercube of equal
sides |δxj | (j = 1, . . . , 10), having x as one of its vertices,
i.e., we follow the evolution of the points xj = x + δxj ,
and define, as usual, the side of the evolved hypercube
by δxj(t) = Φtxj −Φtx. Notice that the hypercube does
not belong to the zero–dipole manifold (not even to the

Dirac one); however, in our specific case, the integration
of the equations of motion, backward in time, insures
that the trajectories fall on the Dirac manifold after a
very short transient (of the order 2ε), because the run-
away component of the motion is exponentially damped
as one proceeds backward in time. So, the hypercube
becomes squeezed on the physical manifold, and one of
its 8–dimensional faces becomes tangent to the manifold.
To get the density ρ(x), it is then sufficient to compute
the area of the latter face, divided by the initial area, and
then calculate its time–average along the trajectory of x
(which obviously belongs to the zero–dipole manifold for
all times).

We chose to numerically integrate the system with a
fourth order Runge–Kutta method and autoadaptation
of the time grid. We take units with m = 1 and e = 1,
completing them by taking as unit of length the Bohr
radius RB , as usually done in atomic physics. In this
way ε would take the value 1/(137)3. However, as we are
only interested in the qualitative behaviour of the system,
in order to reduce the computational time we decided to
take instead ε = 10−2. The autoadaptation of the time
grid was implemented by choosing the integration step h
according to

h = h0 ·max
(

min(r1, r2, r12, rmax), rmin

)
,

where h0 = 10−4, while r1 , r2 and r12 are the distances
of the first and second electron from the nucleus and
their mutual distance respectively, while rmin = 0.001
and rmax = 1 are factors introduced to avoid that the
integration step becomes too small or too large. The
sides |δxj | of the initial hypercubes were all taken equal
to 10−4.

Once the trajectories are known (numerically), there
remains the problem of how to identify the face of the
hypercube lying on the Dirac manifold (which is utterly
unknown). In order to solve this problem, one can start
from the fact that all sides δxj are essentially contained
in the tangent plane to the manifold. Then this plane can
be found by determining the 8–dimensional hyperplane
to which the vectors δxj are closer. As an hyperplane is
defined by two independent unit vectors orthogonal to it,
say a1 and a2, then the tangent plane will be defined by

the unit vectors which minimize
∑

j

[
(a1 · δxj)

2 + (a2 ·

δxj)
2
]
, i. e., the sum of the distances of the points δxj

from the plane. In other terms one has to minimize the
function

S(a1,a2)
def
= aT

1 Ba1 + aT
2 Ba2

where the symmetric matrix B is defined by

B = [δx1, . . . , δx10]T · [δx1, . . . , δx10] .

As is well known, the two independent unit vectors which
minimize S are the eigenvectors corresponding to the two
smallest eigenvalues λ1, λ2 of B. With a little reflection,
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FIG. 1. Invariant density ρ on the invariant zero–dipole man-
ifold, projected on a rectangle of the (E,M) plane, of energy
and angular momentum.

one also gets that the area of the tangent face is nothing
but the square root

√
λ3 . . . λ10 of the product of the

remaining 8 eigenvalues λi, i = 3, . . . , 10 of the matrix
B.

In summary, the numerical procedure consists in tak-
ing for ρ(x) the time–average of

√
λ3 . . . λ10. Notice that,

as occurs in the computation of the Lyapunov exponents,
the sides δxj(t) can grow too much during the evolution.
If, for some j, |δxj | becomes larger than 10−3, we renor-
malize the cube choosing a new one with sides directed
as the eigenvectors of B and again of size 10−4, and the
average is then accordingly modified.

Just to give an indication of the form of the natural
measure, in the zero–dipole manifold we chose 105 initial
points x uniformly distributed in the cube{

r ∈ [0.5, 4.0]× [0.5, 4.0]
ṙ ∈ [−1.5, 1.5]× [−1.5, 1.5] ,

with the condition that they have negative energy. We
checked that averaging over a period is enough to insure
that the time average is stabilized.

Now, the zero–dipole manifold is 4–dimensional, so
that in principle ρ depends on four variables (i.e., po-
sition and velocity). Recall however that on such a man-
ifold the motion is a purely Coulomb one, so that it is
integrable. Then, thinking in terms of action–angle vari-
ables, the interesting ones are just the two actions, which
in our case are E−1/2, E being the (mechanical) energy,
and the angular momentum M , whereas the angles, i.e.,
the orientation of the orbit and the starting point of the
motion on the orbit, are irrelevant. So we chose to in-
tegrate away the two angles from the density ρ, and to
analyze the corresponding reduced density, ρ(E,M) (by
abuse of language still denoting it by ρ).

The result is shown in Figures 1–3. In Figure 1 the
reduced density ρ is reported versus E and M . While a
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FIG. 2. Same as Figure 1, with the values of ρ represented in
a gray decimal logarithmic scale, covering a thousand orders
of magnitude.
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FIG. 3. Same as Figure 1, restricted to a smaller portion of the
original rectangle, with the ordinates in a decimal logarithmic
scale as in Figure 2 .

priori the measure could be spread over the whole rect-
angle, the figure shows that it is actually concentrated
in an extremely small area. This is more clearly exhib-
ited in Figure 2, which still covers the whole rectangle,
but gives the density in a decimal lograthmic gray scale,
which covers a thousand orders of magnitude. Figure 3 is
instead the same as Figure 1, restricted to a smaller por-
tion of the rectangle, still with the ordinates in a decimal
logarithmic scale. It shows that the function ρ(E,M)
has a very complex structure, with values ranging over
a thousand orders of magnitude in an apparently nons-
mooth way. This fact might suggest that the measure is
not absolutely continuous with respect to the restriction
of the Lebesgue one, possibly having some kind of fractal
structure, but we leave this problem for possible future
work.

In any case, we have shown that the peculiar character
of dissipation entering electrodynamics of point particles
restricted to the Dirac physical manifold, makes the final
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dynamics quite different from that of more familiar dis-
sipative systems such as the Lorenz one. Indeed in the
latter case it is the invariant attractor that has a strange
character, while the natural invariant measure induced
on by the dynamics is somehow trivial, as correspond-
ing to that of a hyperbolic system. In the former case,
instead, the invariant manifold is trivial (being just the
hyperplane xcm = 0, ẋcm = 0, ẍcm = 0 in the ambient
phase space), while it is the invariant measure which ap-
parently has a strange character.

IV. CONCLUSIONS

We investigated the main modifications that are in-
troduced in the Coulomb Helium atom model when the
radiation reaction forces are taken into account in the
simplest possible way, and the asymptotic Dirac prescrip-
tion is consequently introduced, according to which the
phase space has to be restricted to the submanifold of
points leading to motions with a finite emitted energy.

The first qualitative result we found is that the prob-
lem of the breakdown of the atom (corresponding to au-
toionization for generic initial data with negative energy),
which makes the Coulomb model inconsistent, is now
eliminated. The second one is the existence of an in-
variant manifold of stable periodic orbits, that moreover
is attractive. Such a manifold is the zero–dipole one, on
which the system does not radiate energy away, in the
dipole approximation.

Finally, the invariant measure naturally induced by
the time–flow on the zero–dipole manifold was studied
numerically. We showed that such a measure is far from
trivial, being presumably non absolutely continuous with
respect to the restriction of the Lebesgue measure, pos-
sibly with some kind of fractal structure. This is at vari-
ance with the known examples of dissipative systems, for
which the measure is trivial, while it is the attractor that
is strange (i.e. a fractal set). This is apparently a conse-
quence of the peculiar character of the radiation reaction
force, which makes the system dissipative when restricted

to the Dirac physical manifold, while making it expansive
in the ambient phase space.

A very interesting problem that remains open is that of
comparing the special periodic orbits which are selected
on the zero–dipole manifold as the most probable ones
according to the natural measure, with those, apparently
of special physical relevance, studied by De Luca. We
leave this point for future work.
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