147,215 research outputs found
Computer program for transient response of structural rings subjected to fragment impact
Mathematical optimization of containment/deflection system would save time, effort, and material as well as afford designer greater opportunity to investigate new ideas and variety of materials
Switching magnetoresistance in vertically interfaced Pr0.5Ca0.5MnO3 grown on ZnO nanowires
The synthesis, morphology and magneto-transport properties of
nanostructure-engineered charge-ordered Pr0.5Ca0.5MnO3 grown on ZnO nanowires
are reported. The stability of the charge-ordering can be tuned, but more
interestingly the sign of the magnetoresistance is inverted at low
temperatures. Coexistence of ferromagnetic clusters on the surface and
antiferromagnetic phase in the core of the grains were considered in order to
understand these features. This work suggests that such a process of growing on
nanowires network can be readily extended to other transition metal oxides and
open doors towards tailoring their functionalities.Comment: 7 pages, 4 figures, to be published in Applied Physics Letter
CoreTSAR: Task Scheduling for Accelerator-aware Runtimes
Heterogeneous supercomputers that incorporate computational accelerators
such as GPUs are increasingly popular due to their high
peak performance, energy efficiency and comparatively low cost.
Unfortunately, the programming models and frameworks designed
to extract performance from all computational units still lack the
flexibility of their CPU-only counterparts. Accelerated OpenMP
improves this situation by supporting natural migration of OpenMP
code from CPUs to a GPU. However, these implementations currently
lose one of OpenMP’s best features, its flexibility: typical
OpenMP applications can run on any number of CPUs. GPU implementations
do not transparently employ multiple GPUs on a node
or a mix of GPUs and CPUs. To address these shortcomings, we
present CoreTSAR, our runtime library for dynamically scheduling
tasks across heterogeneous resources, and propose straightforward
extensions that incorporate this functionality into Accelerated
OpenMP. We show that our approach can provide nearly linear
speedup to four GPUs over only using CPUs or one GPU while
increasing the overall flexibility of Accelerated OpenMP
Symmetry Principle Preserving and Infinity Free Regularization and renormalization of quantum field theories and the mass gap
Through defining irreducible loop integrals (ILIs), a set of consistency
conditions for the regularized (quadratically and logarithmically) divergent
ILIs are obtained to maintain the generalized Ward identities of gauge
invariance in non-Abelian gauge theories. Overlapping UV divergences are
explicitly shown to be factorizable in the ILIs and be harmless via suitable
subtractions. A new regularization and renormalization method is presented in
the initial space-time dimension of the theory. The procedure respects
unitarity and causality. Of interest, the method leads to an infinity free
renormalization and meanwhile maintains the symmetry principles of the original
theory except the intrinsic mass scale caused conformal scaling symmetry
breaking and the anomaly induced symmetry breaking. Quantum field theories
(QFTs) regularized through the new method are well defined and governed by a
physically meaningful characteristic energy scale (CES) and a physically
interesting sliding energy scale (SES) which can run from to a dynamically generated mass gap or to in the
absence of mass gap and infrared (IR) problem. It is strongly indicated that
the conformal scaling symmetry and its breaking mechanism play an important
role for understanding the mass gap and quark confinement.Comment: 59 pages, Revtex, 4 figures, 1 table, Erratum added, published
versio
Freezing Out Early Dark Energy
A phenomenological model of dark energy that tracks the baryonic and cold
dark matter at early times but resembles a cosmological constant at late times
is explored. In the transition between these two regimes, the dark energy
density drops rapidly as if it were a relic species that freezes out, during
which time the equation of state peaks at +1. Such an adjustment in the dark
energy density, as it shifts from scaling to potential-domination, could be the
signature of a trigger mechanism that helps explain the late-time cosmic
acceleration. We show that the non-negligible dark energy density at early
times, and the subsequent peak in the equation of state at the transition,
leave an imprint on the cosmic microwave background anisotropy pattern and the
rate of growth of large scale structure. The model introduces two new
parameters, consisting of the present-day equation of state and the redshift of
the freeze-out transition. A Monte Carlo Markov Chain analysis of a
ten-dimensional parameter space is performed to compare the model with
pre-Planck cosmic microwave background, large scale structure and supernova
data and measurements of the Hubble constant. We find that the transition
described by this model could have taken place as late as a redshift z~400. We
explore the capability of future cosmic microwave background and weak lensing
experiments to put tighter constraints on this model. The viability of this
model may suggest new directions in dark-energy model building that address the
coincidence problem.Comment: 11 pages, 15 figure
Spin relaxation in an InAs quantum dot in the presence of terahertz driving fields
The spin relaxation in a 1D InAs quantum dot with the Rashba spin-orbit
coupling under driving THz magnetic fields is investigated by developing the
kinetic equation with the help of the Floquet-Markov theory, which is
generalized to the system with the spin-orbit coupling, to include both the
strong driving field and the electron-phonon scattering. The spin relaxation
time can be effectively prolonged or shortened by the terahertz magnetic field
depending on the frequency and strength of the terahertz magnetic field. The
effect can be understood as the sideband-modulated spin-phonon scattering. This
offers an additional way to manipulate the spin relaxation time.Comment: 8 pages, 1 figure, to be published in PR
User's guide to computer programs JET 5A and CIVM-JET 5B to calculate the large elastic-plastic dynamically-induced deformations of multilayer partial and/or complete structural rings
These structural ring deflections lie essentially in one plane and, hence, are called two-dimensional (2-d). The structural rings may be complete or partial; the former may be regarded as representing a fragment containment ring while the latter may be viewed as a 2-d fragment-deflector structure. These two types of rings may be either free or supported in various ways (pinned-fixed, locally clamped, elastic-foundation supported, mounting-bracket supported, etc.). The initial geometry of each ring may be circular or arbitrarily curved; uniform-thickness or variable-thickness rings may be analyzed. Strain-hardening and strain-rate effects of initially-isotropic material are taken into account. An approximate analysis utilizing kinetic energy and momentum conservation relations is used to predict the after-impact velocities of each fragment and of the impact-affected region of the ring; this procedure is termed the collision-imparted velocity method (CIVM) and is used in the CIVM-JET 5 B program. This imparted-velocity information is used in conjunction with a finite-element structural response computation code to predict the transient, large-deflection, elastic-plastic responses of the ring. Similarly, the equations of motion of each fragment are solved in small steps in time. Provisions are made in the CIVM-JET 5B code to analyze structural ring response to impact attack by from 1 to 3 fragments, each with its own size, mass, translational velocity components, and rotational velocity. The effects of friction between each fragment and the impacted ring are included
Recommended from our members
Stability of Graphene Oxide encapsulated Gold Nanorods for optical sensing purposes
This paper presents the synthesis and characterization of a graphene oxide encapsulated gold nanorod (GNR) complex, where its stability was investigated over time by recording the absorption spectra obtained using a UV/Visible spectrometer over the wavelength region of 200 nm to 1000 nm. Poly Ethylene Glycol (PEG) stablized GNRs were found to be more stable in the presence of graphene oxide dispersions compared to Cetyl Timethyl Ammonium Bromide (CTAB) stabilized GNRs. These GNR complexes, prepared with an active graphene oxide coating on the surface, are presented as a well-suited platform for the development of localized plasmon resonance-based fibre optic biosensors due to the surface functional groups of graphene oxide that can form bio-composites with other biological nanomaterials
- …
