147,215 research outputs found

    Computer program for transient response of structural rings subjected to fragment impact

    Get PDF
    Mathematical optimization of containment/deflection system would save time, effort, and material as well as afford designer greater opportunity to investigate new ideas and variety of materials

    Switching magnetoresistance in vertically interfaced Pr0.5Ca0.5MnO3 grown on ZnO nanowires

    Full text link
    The synthesis, morphology and magneto-transport properties of nanostructure-engineered charge-ordered Pr0.5Ca0.5MnO3 grown on ZnO nanowires are reported. The stability of the charge-ordering can be tuned, but more interestingly the sign of the magnetoresistance is inverted at low temperatures. Coexistence of ferromagnetic clusters on the surface and antiferromagnetic phase in the core of the grains were considered in order to understand these features. This work suggests that such a process of growing on nanowires network can be readily extended to other transition metal oxides and open doors towards tailoring their functionalities.Comment: 7 pages, 4 figures, to be published in Applied Physics Letter

    CoreTSAR: Task Scheduling for Accelerator-aware Runtimes

    Get PDF
    Heterogeneous supercomputers that incorporate computational accelerators such as GPUs are increasingly popular due to their high peak performance, energy efficiency and comparatively low cost. Unfortunately, the programming models and frameworks designed to extract performance from all computational units still lack the flexibility of their CPU-only counterparts. Accelerated OpenMP improves this situation by supporting natural migration of OpenMP code from CPUs to a GPU. However, these implementations currently lose one of OpenMP’s best features, its flexibility: typical OpenMP applications can run on any number of CPUs. GPU implementations do not transparently employ multiple GPUs on a node or a mix of GPUs and CPUs. To address these shortcomings, we present CoreTSAR, our runtime library for dynamically scheduling tasks across heterogeneous resources, and propose straightforward extensions that incorporate this functionality into Accelerated OpenMP. We show that our approach can provide nearly linear speedup to four GPUs over only using CPUs or one GPU while increasing the overall flexibility of Accelerated OpenMP

    Symmetry Principle Preserving and Infinity Free Regularization and renormalization of quantum field theories and the mass gap

    Get PDF
    Through defining irreducible loop integrals (ILIs), a set of consistency conditions for the regularized (quadratically and logarithmically) divergent ILIs are obtained to maintain the generalized Ward identities of gauge invariance in non-Abelian gauge theories. Overlapping UV divergences are explicitly shown to be factorizable in the ILIs and be harmless via suitable subtractions. A new regularization and renormalization method is presented in the initial space-time dimension of the theory. The procedure respects unitarity and causality. Of interest, the method leads to an infinity free renormalization and meanwhile maintains the symmetry principles of the original theory except the intrinsic mass scale caused conformal scaling symmetry breaking and the anomaly induced symmetry breaking. Quantum field theories (QFTs) regularized through the new method are well defined and governed by a physically meaningful characteristic energy scale (CES) McM_c and a physically interesting sliding energy scale (SES) μs\mu_s which can run from μsMc\mu_s \sim M_c to a dynamically generated mass gap μs=μc\mu_s=\mu_c or to μs=0\mu_s =0 in the absence of mass gap and infrared (IR) problem. It is strongly indicated that the conformal scaling symmetry and its breaking mechanism play an important role for understanding the mass gap and quark confinement.Comment: 59 pages, Revtex, 4 figures, 1 table, Erratum added, published versio

    Freezing Out Early Dark Energy

    Get PDF
    A phenomenological model of dark energy that tracks the baryonic and cold dark matter at early times but resembles a cosmological constant at late times is explored. In the transition between these two regimes, the dark energy density drops rapidly as if it were a relic species that freezes out, during which time the equation of state peaks at +1. Such an adjustment in the dark energy density, as it shifts from scaling to potential-domination, could be the signature of a trigger mechanism that helps explain the late-time cosmic acceleration. We show that the non-negligible dark energy density at early times, and the subsequent peak in the equation of state at the transition, leave an imprint on the cosmic microwave background anisotropy pattern and the rate of growth of large scale structure. The model introduces two new parameters, consisting of the present-day equation of state and the redshift of the freeze-out transition. A Monte Carlo Markov Chain analysis of a ten-dimensional parameter space is performed to compare the model with pre-Planck cosmic microwave background, large scale structure and supernova data and measurements of the Hubble constant. We find that the transition described by this model could have taken place as late as a redshift z~400. We explore the capability of future cosmic microwave background and weak lensing experiments to put tighter constraints on this model. The viability of this model may suggest new directions in dark-energy model building that address the coincidence problem.Comment: 11 pages, 15 figure

    Spin relaxation in an InAs quantum dot in the presence of terahertz driving fields

    Full text link
    The spin relaxation in a 1D InAs quantum dot with the Rashba spin-orbit coupling under driving THz magnetic fields is investigated by developing the kinetic equation with the help of the Floquet-Markov theory, which is generalized to the system with the spin-orbit coupling, to include both the strong driving field and the electron-phonon scattering. The spin relaxation time can be effectively prolonged or shortened by the terahertz magnetic field depending on the frequency and strength of the terahertz magnetic field. The effect can be understood as the sideband-modulated spin-phonon scattering. This offers an additional way to manipulate the spin relaxation time.Comment: 8 pages, 1 figure, to be published in PR

    User's guide to computer programs JET 5A and CIVM-JET 5B to calculate the large elastic-plastic dynamically-induced deformations of multilayer partial and/or complete structural rings

    Get PDF
    These structural ring deflections lie essentially in one plane and, hence, are called two-dimensional (2-d). The structural rings may be complete or partial; the former may be regarded as representing a fragment containment ring while the latter may be viewed as a 2-d fragment-deflector structure. These two types of rings may be either free or supported in various ways (pinned-fixed, locally clamped, elastic-foundation supported, mounting-bracket supported, etc.). The initial geometry of each ring may be circular or arbitrarily curved; uniform-thickness or variable-thickness rings may be analyzed. Strain-hardening and strain-rate effects of initially-isotropic material are taken into account. An approximate analysis utilizing kinetic energy and momentum conservation relations is used to predict the after-impact velocities of each fragment and of the impact-affected region of the ring; this procedure is termed the collision-imparted velocity method (CIVM) and is used in the CIVM-JET 5 B program. This imparted-velocity information is used in conjunction with a finite-element structural response computation code to predict the transient, large-deflection, elastic-plastic responses of the ring. Similarly, the equations of motion of each fragment are solved in small steps in time. Provisions are made in the CIVM-JET 5B code to analyze structural ring response to impact attack by from 1 to 3 fragments, each with its own size, mass, translational velocity components, and rotational velocity. The effects of friction between each fragment and the impacted ring are included
    corecore