25,078 research outputs found

    Deterministic cavity quantum electrodynamics with trapped ions

    Get PDF
    We have employed radio-frequency trapping to localize a single 40Ca+-ion in a high-finesse optical cavity. By means of laser Doppler cooling, the position spread of the ion's wavefunction along the cavity axis was reduced to 42 nm, a fraction of the resonance wavelength of ionized calcium (λ = 397 nm). By controlling the position of the ion in the optical field, continuous and completely deterministic coupling of ion and field was realized. The precise three-dimensional location of the ion in the cavity was measured by observing the fluorescent light emitted upon excitation in the cavity field. The single-ion system is ideally suited to implement cavity quantum electrodynamics under cw conditions. To this end we operate the cavity on the D3/2–P1/2 transition of 40Ca+ (λ = 866 nm). Applications include the controlled generation of single-photon pulses with high efficiency and two-ion quantum gates

    Study of the application of hydrogen fuel to long-range subsonic transport aircraft, volume 2

    Get PDF
    The feasibility, practicability, and potential advantages/disadvantages of using liquid hydrogen as fuel in long range, subsonic transport aircraft of advanced design were studied. Both passenger and cargo-type aircraft were investigated. To provide a valid basis for comparison, conventional hydrocarbon (Jet A) fueled aircraft were designed to perform identical missions using the same advanced technology and meeting the same operational constraints. The liquid hydrogen and Jet A fueled aircraft were compared on the basis of weight, size, energy utilization, cost, noise, emissions, safety, and operational characteristics. A program of technology development was formulated

    A calcium ion in a cavity as a controlled single-photon source

    Get PDF
    We present a single calcium ion, coupled to a high-finesse cavity, as an almost ideal system for the controlled generation of single photons. Photons from a pump beam are Raman-scattered by the ion into the cavity mode, which subsequently emits the photon into a well-defined output channel. In contrast with comparable atomic systems, the ion is localized at a fixed position in the cavity mode for indefinite times, enabling truly continuous operation of the device. We have performed numeric calculations to assess the performance of the system and present the first experimental indication of single-photon emission in our set-up

    Quantum-state input-output relations for absorbing cavities

    Full text link
    The quantized electromagnetic field inside and outside an absorbing high-QQ cavity is studied, with special emphasis on the absorption losses in the coupling mirror and their influence on the outgoing field. Generalized operator input-output relations are derived, which are used to calculate the Wigner function of the outgoing field. To illustrate the theory, the preparation of the outgoing field in a Schr\"{o}dinger cat-like state is discussed.Comment: 12 pages, 5 eps figure

    How to run a brain bank. A report from the Austro-German brain bank

    Get PDF
    The sophisticated analysis of and growing information on the human brain requires that acquisition, dissection, storage and distribution of rare material are managed in a professional way. In this publication we present the concept and practice of our brain bank. Both brain tissue and information are handled by standardized procedures and flow in parallel from pathology to neuropathology and neurochemistry. Data concerning brain material are updated with clinical information gained by standardized procedures

    Intense-field renormalization of cavity-induced spontaneous emission

    Get PDF
    We examine theoretically the recent experiments of Lange and Walther on the dynamical interaction of Rydberg atoms in a microwave cavity in the presence of a strong driving field. In particular, we study how the intense field renormalizes the cavity-induced spontaneous emission. For this purpose we derive the master equation for the atomic dynamics by adiabatically eliminating the cavity-field variables, while treating the intense driving field nonperturbatively. We present analytical and numerical solutions of the master equation, taking into account the turn on and turn off of the atom-field coupling in the rest frame of the atoms, as well as the velocity distribution of the atomic beam. We obtain good agreement between theoretical results and experiments

    Stabilized hot electron bolometer heterodyne receiver at 2.5 THz

    Get PDF
    We report on a method to stabilize a hot electron bolometer (HEB) mixer at 2.5 THz. The technique utilizes feedback control of the local oscillator (LO) laser power by means of a swing-arm actuator placed in the optical beam path. We demonstrate that this technique yields a factor of 50 improvement in the spectroscopic Allan variance time which is shown to be over 30 s in a 12 MHz noise fluctuation bandwidth. Furthermore, broadband signal direct detection effects may be minimized by this technique. The technique is versatile and can be applied to practically any local oscillator at any frequency

    Cavity-induced decay of Floquet states in a bichromatic driving field

    Get PDF
    A theoretical study of the dynamics of Rydberg atoms in a microwave cavity driven by a strong bichromatic field is presented. The resonator is assumed to operate in the low-Q regime. As a consequence, photons emitted by the atoms are dissipated in the cavity walls during the interaction time of the atoms inside the resonator. In this situation the cavity field follows the atomic dynamics adiabatically. The transient behavior of the system is analyzed in terms of Floquet states, and cavity-induced transition rates between these states are calculated for a large range of parameters of the bichromatic field. Narrow resonances are found in the transition rates, in agreement with recent experimental investigations of cavity Rydberg atoms subjected to strong bichromatic driving. We explain in detail the structure of the resonances, which is determined by the frequency-dependent cavity-mode density as well as the Rabi frequencies of the applied fields. The intensity-dependent shifts of the resonance frequencies are also calculated and found to be largely insensitive to inhomogeneous broadening. Finally, the numerical results are compared with experimental observations

    The MESA accelerometer for space application

    Get PDF
    An electrostatically suspended proof mass in the Miniature Electrostatic Accelerometer (MESA) is used to measure acceleration in the submicro-g range. Since no fixed mechanical suspension (such as springs or strings) is used, the constrainment scaling can be changed electrically after being placed in orbit. A single proof mass can sense accelerations in three axes simultaneously. It can survive high-g pyrotechnic-generated shocks and launch environments while unpowered
    • …
    corecore