311 research outputs found

    Leaving Residual Varus Alignment After Total Knee Arthroplasty Does Not Improve Patient Outcomes

    Get PDF
    Background Recent popularity of kinematic alignment and constitutional varus has caused some surgeons to leave varus limbs in residual varus after total knee arthroplasty (TKA). This study assessed whether if patients left in residual varus have improved outcomes compared with those fully corrected to neutral alignment. Methods A retrospective review of 361 consecutive primary TKAs was performed. Anatomic tibiofemoral alignment was measured and knees were categorized as neutral, varus, or valgus. Modern Knee Society scores and University of California Los Angeles Activity Level scores were collected at minimum 1-year follow-up. Results After exclusions for confounds and loss to follow-up, 262 knees were available for analysis, 67% (176) of which were preoperatively varus. Sixty-six percent of varus knees were corrected to neutral, 25.6% were left in residual varus, and 8.5% were corrected to valgus. Median Knee Society objective scores at latest follow-up were greater in knees corrected to neutral (97), followed by knees corrected to varus (95), and valgus (93; P = .025), but post hoc comparisons between pairs of medians were not significant. There was no difference between groups in any other outcome measure (P ≥ .245) or the amount of improvement from baseline (P ≥ .423). Sixty percent of native varus patients corrected to neutral, 64% of those corrected to varus, and 40% of those corrected to valgus reported that their knee felt normal (P = .193). Conclusion Findings fail to support the notion that leaving varus knees in residual varus will improve outcomes and pain. Caution is advised when leaving limbs in residual varus after TKA

    Characterization of aerosol associated with enhanced small particle number concentrations in a suburban forested environment

    Get PDF
    Two elevated particle number/mass growth events associated with Aitken‐mode particles were observed during a sampling campaign (13–29 September 2004) at the Duke University Free‐Air CO2 Enrichment facility, a forested field site located in suburban central North Carolina. Aerosol growth rates between 1.2 and 4.9 nm hr−1 were observed, resulting in net increases in geometric mean diameter of 21 and 37 nm during events. Growth was dominated by addition of oxidized organic compounds. Campaign‐average aerosol mass concentrations measured by an Aerodyne quadrupole aerosol mass spectrometer (Q‐AMS) were 1.9 ± 1.6 (σ), 1.6 ± 1.9, 0.1 ± 0.1, and 0.4 ± 0.4 μg m−3 for organic mass (OM), sulfate, nitrate, and ammonium, respectively. These values represent 47%, 40%, 3%, and 10%, respectively, of the measured submicron aerosol mass. Based on Q‐AMS spectra, OM was apportioned to hydrocarbon‐like organic aerosol (HOA, likely representing primary organic aerosol) and two types of oxidized organic aerosol (OOA‐1 and OOA‐2), which constituted on average 6%, 58%, and 36%, respectively, of the apportioned OM. OOA‐1 probably represents aged, regional secondary organic aerosol (SOA), while OOA‐2 likely reflects less aged SOA. Organic aerosol characteristics associated with the events are compared to the campaign averages. Particularly in one event, the contribution of OOA‐2 to overall OM levels was enhanced, indicating the likelihood of less aged SOA formation. Statistical analyses investigate the relationships between HOA, OOA‐1, OOA‐2, other aerosol components, gas‐phase species, and meteorological data during the campaign and individual events. No single variable clearly controls the occurrence of a particle growth event

    Retrievals of Aerosol Optical and Microphysical Properties from Imaging Polar Nephelometer Scattering Measurements

    Get PDF
    A method for the retrieval of aerosol optical and microphysical properties from in situ light-scattering measurements is presented and the results are compared with existing measurement techniques. The Generalized Retrieval of Aerosol and Surface Properties (GRASP) is applied to airborne and laboratory measurements made by a novel polar nephelometer. This instrument, the Polarized Imaging Nephelometer (PI-Neph), is capable of making high-accuracy field measurements of phase function and degree of linear polarization, at three visible wavelengths, over a wide angular range of 3 to 177. The resulting retrieval produces particle size distributions (PSDs) that agree, within experimental error, with measurements made by commercial optical particle counters (OPCs). Additionally, the retrieved real part of the refractive index is generally found to be within the predicted error of 0.02 from the expected values for three species of humidified salt particles, with a refractive index that is well established. The airborne measurements used in this work were made aboard the NASA DC-8 aircraft during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field campaign, and the inversion of this data represents the first aerosol retrievals of airborne polar nephelometer data. The results provide confidence in the real refractive index product, as well as in the retrieval's ability to accurately determine PSD, without assumptions about refractive index that are required by the majority of OPCs

    Aerosol optical and microphysical retrievals from a hybrid multiwavelength lidar data set - DISCOVER-AQ 2011

    Get PDF
    © Author(s) 2014. This open access work is distributed under the Creative Commons Attribution 3.0 License (https://creativecommons.org/licenses/by/3.0/).Retrievals of aerosol microphysical properties (effective radius, volume and surface-area concentrations) and aerosol optical properties (complex index of refraction and single-scattering albedo) were obtained from a hybrid multiwavelength lidar data set for the first time. In July 2011, in the Baltimore-Washington DC region, synergistic profiling of optical and microphysical properties of aerosols with both airborne (in situ and remote sensing) and ground-based remote sensing systems was performed during the first deployment of DISCOVER-AQ. The hybrid multiwavelength lidar data set combines ground-based elastic backscatter lidar measurements at 355 nm with airborne High-Spectral-Resolution Lidar (HSRL) measurements at 532 nm and elastic backscatter lidar measurements at 1064 nm that were obtained less than 5 km apart from each other. This was the first study in which optical and microphysical retrievals from lidar were obtained during the day and directly compared to AERONET and in situ measurements for 11 cases. Good agreement was observed between lidar and AERONET retrievals. Larger discrepancies were observed between lidar retrievals and in situ measurements obtained by the aircraft and aerosol hygroscopic effects are believed to be the main factor in such discrepancies.Peer reviewe

    Laboratory and modeling studies on the effects of water and soot emissions and ambient conditions on the properties of contrail ice particles in the jet regime

    Get PDF
    Contrails and contrail-induced cirrus clouds are identified as the most uncertain components in determining aviation impacts on global climate change. Parameters affecting contrail ice particle formation immediately after the engine exit plane (< 5 s in plume age) may be critical to ice particle properties used in large-scale models predicting contrail radiative forcing. Despite this, detailed understanding of these parametric effects is still limited. In this paper, we present results from recent laboratory and modeling studies conducted to investigate the effects of water and soot emissions and ambient conditions on near-field formation of contrail ice particles and ice particle properties. The Particle Aerosol Laboratory (PAL) at the NASA Glenn Research Center and the Aerodyne microphysical parcel model for contrail ice particle formation were employed. Our studies show that exhaust water concentration has a significant impact on contrail ice particle formation and properties. When soot particles were introduced, ice particle formation was observed only when exhaust water concentration was above a critical level. When no soot or sulfuric acid was introduced, no ice particle formation was observed, suggesting that ice particle formation from homogeneous nucleation followed by homogeneous freezing of liquid water was unfavorable. Soot particles were found to compete for water vapor condensation, and higher soot concentrations emitted into the chamber resulted in smaller ice particles being formed. Chamber conditions corresponding to higher cruising altitudes were found to favor ice particle formation. The microphysical model captures trends of particle extinction measurements well, but discrepancies between the model and the optical particle counter measurements exist as the model predicts narrower ice particle size distributions and ice particle sizes nearly a factor of two larger than measured. These discrepancies are likely due to particle loss and scatter during the experimental sampling process and the lack of treatment of turbulent mixing in the model. Our combined experimental and modeling work demonstrates that formation of contrail ice particles can be reproduced in the NASA PAL facility, and the parametric understanding of the ice particle properties from the model and experiments can potentially be used in large-scale models to provide better estimates of the impact of aviation contrails on climate change

    Observations and Hypotheses Related to Low to Middle Free Tropospheric Aerosol, Water Vapor and Altocumulus Cloud Layers within Convective Weather Regimes: A SEAC4RS Case Study

    Get PDF
    The NASA Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) project included goals related to aerosol particle life cycle in convective regimes. Using the University of Wisconsin High Spectral Resolution Lidar system at Huntsville, Alabama, USA, and the NASA DC-8 research aircraft, we investigate the altitude dependence of aerosol, water vapor and Altocumulus (Ac) properties in the free troposphere from a canonical 12 August 2013 convective storm case as a segue to a presentation of a mission-wide analysis. It stands to reason that any moisture detrainment from convection must have an associated aerosol layer. Modes of covariability between aerosol, water vapor and Ac are examined relative to the boundary layer entrainment zone, 0 ∘C level, and anvil, a region known to contain Ac clouds and a complex aerosol layering structure (Reid et al., 2017). Multiple aerosol layers in regions warmer than 0 ∘C were observed within the planetary boundary layer entrainment zone. At 0 ∘C there is a proclivity for aerosol and water vapor detrainment from storms, in association with melting level Ac shelves. Finally, at temperatures colder than 0 ∘C, weak aerosol layers were identified above Cumulus congestus tops (∼0 and ∼-20 role= presentation style= box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative; \u3e∼−20 ∘C). Stronger aerosol signals return in association with anvil outflow. In situ data suggest that detraining particles undergo aqueous-phase or heterogeneous chemical or microphysical transformations, while at the same time larger particles are being scavenged at higher altitudes leading to enhanced nucleation. We conclude by discussing hypotheses regarding links to aerosol emissions and potential indirect effects on Ac clouds
    corecore