30 research outputs found

    Temperatures during the dry cutting of titanium alloy using diamond composites with ceramic bonding phases

    No full text
    In this paper the thermal properties of diamond composites with ceramic bonding phases, such as the Ti–Si–C system with nanometric Ti(CN) and TiB₂ are presented. The thermal conductivities of the materials were analyzed by the laser pulse method. In addition, computational simulations of the temperature dependence on the distance from the cutting edge were performed according to the finite element method for the investigated composites, commercial PCD, and hypothetical diamond monocrystal.Досліджено теплові властивості алмазних композитів з керамічними зв’язуючими фазами, таких як системи Ti–Si–C з нанометровим Ti(CN) і TiB₂. Теплопровідності матеріалів проаналізовано за допомогою методу лазерного імпульсу. Крім того, методом скінченних елементів виконано числове моделювання залежності температури від відстані до ріжучої кромки для досліджених композитів, комерційного PCD і гіпотетичного монокристалу алмазу. Розглянуто дві швидкості різання в ході числового обчислення: 100 і 200 м/хв.Исследованы тепловые свойства алмазных композитов с керамическими связующими фазами, таких как системы Ti–Si–C с нанометровым Ti(CN) и TiB₂. Теплопроводности материалов проанализированы с помощью метода лазерного импульса. Кроме того, методом конечных элементов выполнено числовое моделирование зависимости температуры от расстояния до режущей кромки для исследованных композитов, коммерческого PCD и гипотетического монокристалла алмаза. Рассматривали две скорости резки в ходе числового вычисления: 100 и 200 м/мин

    Differences between Ca2+ and Mg2+ in DNA binding and release by the SfiI restriction endonuclease: implications for DNA looping

    Get PDF
    Many enzymes acting on DNA require Mg2+ ions not only for catalysis but also to bind DNA. Binding studies often employ Ca2+ as a substitute for Mg2+, to promote DNA binding whilst disallowing catalysis. The SfiI endonuclease requires divalent metal ions to bind DNA but, in contrast to many systems where Ca2+ mimics Mg2+, Ca2+ causes SfiI to bind DNA almost irreversibly. Equilibrium binding by wild-type SfiI cannot be conducted with Mg2+ present as the DNA is cleaved so, to study the effect of Mg2+ on DNA binding, two catalytically-inactive mutants were constructed. The mutants bound DNA in the presence of either Ca2+ or Mg2+ but, unlike wild-type SfiI with Ca2+, the binding was reversible. With both mutants, dissociation was slow with Ca2+ but was in one case much faster with Mg2+. Hence, Ca2+ can affect DNA binding differently from Mg2+. Moreover, SfiI is an archetypal system for DNA looping; on DNA with two recognition sites, it binds to both sites and loops out the intervening DNA. While the dynamics of looping cannot be measured with wild-type SfiI and Ca2+, it becomes accessible with the mutant and Mg2+

    Ulnar-sided wrist pain. II. Clinical imaging and treatment

    Get PDF
    Pain at the ulnar aspect of the wrist is a diagnostic challenge for hand surgeons and radiologists due to the small and complex anatomical structures involved. In this article, imaging modalities including radiography, arthrography, ultrasound (US), computed tomography (CT), CT arthrography, magnetic resonance (MR) imaging, and MR arthrography are compared with regard to differential diagnosis. Clinical imaging findings are reviewed for a more comprehensive understanding of this disorder. Treatments for the common diseases that cause the ulnar-sided wrist pain including extensor carpi ulnaris (ECU) tendonitis, flexor carpi ulnaris (FCU) tendonitis, pisotriquetral arthritis, triangular fibrocartilage complex (TFCC) lesions, ulnar impaction, lunotriquetral (LT) instability, and distal radioulnar joint (DRUJ) instability are reviewed

    Insight into Sam Francis’ painting techniques through the analytical study of twenty-eight artworks made between 1946 and 1992

    Full text link
    The present paper proposes an overview of the painting materials experimented with over the years by Sam Francis, leading figure of the post-World War II American painting, through the analytical study of an extended number of paint samples supplied by the Sam Francis Foundation. In total, 279 samples taken from twenty-eight artworks made between 1946 and 1992, were analyzed by Raman, FTIR and Py–GC/MS techniques. The obtained results revealed the Francis’ preference in terms of pigments, i.e., phthalocyanine blues and greens, and outlined unconventional combination of binder media

    Vaccine Increases the Diversity and Activation of Intratumoral T Cells in the Context of Combination Immunotherapy

    No full text
    Resistance to immune checkpoint blockade therapy has spurred the development of novel combinations of drugs tailored to specific cancer types, including non-inflamed tumors with low T-cell infiltration. Cancer vaccines can potentially be utilized as part of these combination immunotherapies to enhance antitumor efficacy through the expansion of tumor-reactive T cells. Utilizing murine models of colon and mammary carcinoma, here we investigated the effect of adding a recombinant adenovirus-based vaccine targeting tumor-associated antigens with an IL-15 super agonist adjuvant to a multimodal regimen consisting of a bifunctional anti-PD-L1/TGF-βRII agent along with a CXCR1/2 inhibitor. We demonstrate that the addition of vaccine induced a greater tumor infiltration with T cells highly positive for markers of proliferation and cytotoxicity. In addition to this enhancement of cytotoxic T cells, combination therapy showed a restructured tumor microenvironment with reduced Tregs and CD11b+Ly6G+ myeloid cells. Tumor-infiltrating immune cells exhibited an upregulation of gene signatures characteristic of a Th1 response and presented with a more diverse T-cell receptor (TCR) repertoire. These results provide the rationale for the addition of vaccine-to-immune checkpoint blockade-based therapies being tested in the clinic

    Neural networks in modeling of CNC milling of moderate slope surfaces

    No full text
    Computer numerical control (CNC) allows achieving a high degree of automation of machine tools by pre-programmed numerical commands. CNC milling process is widely used in industry for machining of complex parts. The need of a description of the CNC milling process is necessary for production of precise parts. This paper introduces artificial neural network based modeling, while the CNC milling of moderate slope shapes is studied. The developed neural models consist of two inputs and two outputs. The created neural models were experimentally tested on the real data. Then, the evaluation and comparison of all models were performed

    Base‐Modified Nucleic Acids as a Powerful Tool for Synthetic Biology and Biotechnology

    No full text
    International audienceThe ability of various nucleoside triphosphate analogues of deoxyguanosine and deoxycytidine with 7-deazadeoxyadenosine (A1) and 5-chlorodeoxyuridine (T1) to serve as substrates for Taq DNA polymerase was evaluated. The triphosphate set composed of A1, T1, and 7-deazadeoxyguanosine with either 5-methyldeoxycytidine or 5-fluorodeoxycytidine was successfully employed in the polymerase chain reaction (PCR) of 1.5 kb fragments as well as random oligonucleotide libraries. Another effective combination of triphosphates for the synthesis of a 1 kb PCR product was A1, T1, deoxyinosine, and 5-bromodeoxycytidine. In vivo experiments using an antibiotic-resistant gene containing the latter set demonstrated that the bacterial machinery accepts fully modified sequences as genetic templates. Moreover, the ability of the base-modified segments to selectively protect DNA from cleavage by restriction endonucleases was shown. This approach can be used to regulate the endonuclease cleavage pattern
    corecore