420 research outputs found

    Midlatitude ClO during the maximum atmospheric chlorine burden : in situ balloon measurements and model simulations

    Get PDF
    Chlorine monoxide (ClO) plays a key role in stratospheric ozone loss processes at midlatitudes. We present two balloonborne in situ measurements of ClO conducted in northern hemisphere midlatitudes during the period of the maximum of total inorganic chlorine loading in the atmosphere. Both ClO measurements were conducted on board the TRIPLE balloon payload, launched in November 1996 in Le´on, Spain, and in May 1999 in Aire sur l’Adour, France. For both flights a ClO daylight and night time vertical profile could be derived over an altitude range of approximately 15–31 km. ClO mixing ratios are compared to model simulations performed with the photochemical box model version of the Chemical Lagrangian Model of the Stratosphere (CLaMS). Simulations along 24-h backward trajectories were performed to study the diurnal variation of ClO in the midlatitude lower stratosphere. Model simulations for the flight launched in Aire sur l’Adour 1999 show a good agreement with the ClO measurements. For the flight launched in Le´on 1996, a similar good agreement is found, except at around ~ 650 K potential temperature (~26km altitude). However, a tendency is found that for solar zenith angles greater than 86°–87° the simulated ClO mixing ratios substantially overestimate measured ClO by approximately a factor of 2.5 or more for both flights. Therefore we conclude that no indication can be deduced from the presented ClO measurements that substantial uncertainties exist in midlatitude chlorine chemistry of the stratosphere. An exception is the situation at solar zenith angles greater than 86°–87° where model simulations substantial overestimate ClO observations

    High-Quality draft genome sequence of the Lotus spp. microsymbiont Mesorhizobium loti strain CJ3Sym

    Get PDF
    Mesorhizobium loti strain CJ3Sym was isolated in 1998 following transfer of the integrative and conjugative element ICEMlSymR7A, also known as the R7A symbiosis island, in a laboratory mating from the donor M. loti strain R7A to a nonsymbiotic recipient Mesorhizobium strain CJ3. Strain CJ3 was originally isolated from a field site in the Rocklands range in New Zealand in 1994. CJ3Sym is an aerobic, Gram-negative, non-spore-forming rod. This report reveals the genome of M. loti strain CJ3Sym currently comprises 70 scaffolds totaling 7,563,725 bp. The high-quality draft genome is arranged in 70 scaffolds of 71 contigs, contains 7,331 protein-coding genes and 70 RNA-only encoding genes, and is part of the GEBA-RNB project proposal

    High-quality permanent draft genome sequence of Rhizobium leguminosarum bv. viciae strain GB30; an effective microsymbiont of Pisum sativum growing in Poland

    Get PDF
    Rhizobium leguminosarum bv. viciae GB30 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Pisum sativum. GB30 was isolated in Poland from a nodule recovered from the roots of Pisum sativum growing at Janow. GB30 is also an effective microsymbiont of the annual forage legumes vetch and pea. Here we describe the features of R. leguminosarum bv. viciae strain GB30, together with sequence and annotation. The 7,468,464 bp high-quality permanent draft genome is arranged in 78 scaffolds of 78 contigs containing 7,227 protein-coding genes and 75 RNA-only encoding genes, and is part of the GEBA-RNB project proposal

    High-quality permanent draft genome sequence of Rhizobium leguminosarum bv. viciae strain GB30; an effective microsymbiont of Pisum sativum growing in Poland

    Get PDF
    Rhizobium leguminosarum bv. viciae GB30 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Pisum sativum. GB30 was isolated in Poland from a nodule recovered from the roots of Pisum sativum growing at Janow. GB30 is also an effective microsymbiont of the annual forage legumes vetch and pea. Here we describe the features of R. leguminosarum bv. viciae strain GB30, together with sequence and annotation. The 7,468,464 bp high-quality permanent draft genome is arranged in 78 scaffolds of 78 contigs containing 7,227 protein-coding genes and 75 RNA-only encoding genes, and is part of the GEBA-RNB project proposal

    High-quality permanent draft genome sequence of Rhizobium leguminosarum bv. viciae strain GB30; an effective microsymbiont of Pisum sativum growing in Poland

    Get PDF
    Rhizobium leguminosarum bv. viciae GB30 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Pisum sativum. GB30 was isolated in Poland from a nodule recovered from the roots of Pisum sativum growing at Janow. GB30 is also an effective microsymbiont of the annual forage legumes vetch and pea. Here we describe the features of R. leguminosarum bv. viciae strain GB30, together with sequence and annotation. The 7,468,464 bp high-quality permanent draft genome is arranged in 78 scaffolds of 78 contigs containing 7,227 protein-coding genes and 75 RNA-only encoding genes, and is part of the GEBA-RNB project proposal

    High-quality permanent draft genome sequence of the Parapiptadenia rigida-nodulating Burkholderia sp. strain UYPR1.413

    Get PDF
    Burkholderia sp. strain UYPR1.413 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a root nodule of Parapiptadenia rigida collected at the Angico plantation, Mandiyu, Uruguay, in December 2006. A survey of symbionts of P. rigida in Uruguay demonstrated that this species is nodulated predominantly by Burkholderia microsymbionts. Moreover, Burkholderia sp. strain UYPR1.413 is a highly efficient nitrogen fixing symbiont with this host. Currently, the only other sequenced isolate to fix with this host is Cupriavidus sp. UYPR2.512. Therefore, Burkholderia sp. strain UYPR1.413 was selected for sequencing on the basis of its environmental and agricultural relevance to issues in global carbon cycling, alternative energy production, and biogeochemical importance, and is part of the GEBA-RNB project. Here we describe the features of Burkholderia sp. strain UYPR1.413, together with sequence and annotation. The 10,373,764 bp high-quality permanent draft genome is arranged in 336 scaffolds of 342 contigs, contains 9759 protein-coding genes and 77 RNA-only encoding genes

    High-quality permanent draft genome sequence of Rhizobium sullae strain WSM1592; a Hedysarum coronarium microsymbiont from Sassari, Italy

    Get PDF
    Rhizobium sullae strain WSM1592 is an aerobic, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen (N2) fixing root nodule formed on the short-lived perennial legume Hedysarum coronarium (also known as Sulla coronaria or Sulla). WSM1592 was isolated from a nodule recovered from H. coronarium roots located in Ottava, bordering Sassari, Sardinia in 1995. WSM1592 is highly effective at fixing nitrogen with H. coronarium, and is currently the commercial Sulla inoculant strain in Australia. Here we describe the features of R. sullae strain WSM1592, together with genome sequence information and its annotation. The 7,530,820 bp high-quality permanent draft genome is arranged into 118 scaffolds of 118 contigs containing 7.453 protein-coding genes and 73 RNA-only encoding genes. This rhizobial genome is sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project
    corecore